右随机滤波下条件极值指标估计量的仿真比较

R. Minkah, T. Wet, E. N. Nortey
{"title":"右随机滤波下条件极值指标估计量的仿真比较","authors":"R. Minkah, T. Wet, E. N. Nortey","doi":"10.16929/ajas/337.219","DOIUrl":null,"url":null,"abstract":"In extreme value analysis, the extreme value index plays a vital role as it determines the tail heaviness of the underlying distribution and is the primary parameter required for the estimation of other extreme events. In this paper, we review the estimation of the extreme value index when observations are subject to right random censoring and the presence of covariate information. In addition, we propose some estimators of the extreme value index, including a maximum likelihood estimator from a perturbed Pareto distribution. The existing estimators and the proposed ones are compared through a simulation study under identical conditions. The results show that the performance of the estimators depend on the percentage of censoring, the underlying distribution, the size of extreme value index and the number of top order statistics. Overall, we found the proposed estimator from the perturbed Pareto distribution to be robust to censoring, size of the extreme value index and the number of top order statistics.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simulation Comparison of Estimators of Conditional Extreme Value Index under Right Random Censoring\",\"authors\":\"R. Minkah, T. Wet, E. N. Nortey\",\"doi\":\"10.16929/ajas/337.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In extreme value analysis, the extreme value index plays a vital role as it determines the tail heaviness of the underlying distribution and is the primary parameter required for the estimation of other extreme events. In this paper, we review the estimation of the extreme value index when observations are subject to right random censoring and the presence of covariate information. In addition, we propose some estimators of the extreme value index, including a maximum likelihood estimator from a perturbed Pareto distribution. The existing estimators and the proposed ones are compared through a simulation study under identical conditions. The results show that the performance of the estimators depend on the percentage of censoring, the underlying distribution, the size of extreme value index and the number of top order statistics. Overall, we found the proposed estimator from the perturbed Pareto distribution to be robust to censoring, size of the extreme value index and the number of top order statistics.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16929/ajas/337.219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/ajas/337.219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在极值分析中,极值指数起着至关重要的作用,它决定了底层分布的尾重,是估计其他极端事件所需的主要参数。在本文中,我们讨论了在观测值受到右随机删减和协变量信息存在的情况下极值指数的估计。此外,我们还提出了一些极值指标的估计,包括摄动Pareto分布的极大似然估计。通过在相同条件下的仿真研究,比较了现有的估计方法和所提出的估计方法。结果表明,估计器的性能取决于截尾百分比、底层分布、极值指标的大小和上阶统计量的数量。总的来说,我们发现从摄动Pareto分布中得到的估计量对审查、极值指数的大小和上阶统计量的数量具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simulation Comparison of Estimators of Conditional Extreme Value Index under Right Random Censoring
In extreme value analysis, the extreme value index plays a vital role as it determines the tail heaviness of the underlying distribution and is the primary parameter required for the estimation of other extreme events. In this paper, we review the estimation of the extreme value index when observations are subject to right random censoring and the presence of covariate information. In addition, we propose some estimators of the extreme value index, including a maximum likelihood estimator from a perturbed Pareto distribution. The existing estimators and the proposed ones are compared through a simulation study under identical conditions. The results show that the performance of the estimators depend on the percentage of censoring, the underlying distribution, the size of extreme value index and the number of top order statistics. Overall, we found the proposed estimator from the perturbed Pareto distribution to be robust to censoring, size of the extreme value index and the number of top order statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信