{"title":"通过掺杂和表面改性增强锰酸锂的电化学行为","authors":"Alexandru-Horațiu Mărincaş, P. Ilea","doi":"10.3390/COATINGS11040456","DOIUrl":null,"url":null,"abstract":"Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.","PeriodicalId":22482,"journal":{"name":"THE Coatings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications\",\"authors\":\"Alexandru-Horațiu Mărincaş, P. Ilea\",\"doi\":\"10.3390/COATINGS11040456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.\",\"PeriodicalId\":22482,\"journal\":{\"name\":\"THE Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE Coatings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/COATINGS11040456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE Coatings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/COATINGS11040456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications
Lithium manganese oxide is regarded as a capable cathode material for lithium-ion batteries, but it suffers from relative low conductivity, manganese dissolution in electrolyte and structural distortion from cubic to tetragonal during elevated temperature tests. This review covers a comprehensive study about the main directions taken into consideration to supress the drawbacks of lithium manganese oxide: structure doping and surface modification by coating. Regarding the doping of LiMn2O4, several perspectives are studied, which include doping with single or multiple cations, only anions and combined doping with cations and anions. Surface modification approach consists in coating with different materials like carbonaceous compounds, oxides, phosphates and solid electrolyte solutions. The modified lithium manganese oxide performs better than pristine samples, showing improved cyclability, better behaviour at high discharge c-rates and elevated temperate and improves lithium ions diffusion coefficient.