用于连续移动视觉的模拟卷积图像传感器架构

R. Likamwa, Yunhui Hou, Yuan Gao, M. Polansky, Lin Zhong
{"title":"用于连续移动视觉的模拟卷积图像传感器架构","authors":"R. Likamwa, Yunhui Hou, Yuan Gao, M. Polansky, Lin Zhong","doi":"10.1145/3007787.3001164","DOIUrl":null,"url":null,"abstract":"Continuous mobile vision is limited by the inability to efficiently capture image frames and process vision features. This is largely due to the energy burden of analog readout circuitry, data traffic, and intensive computation. To promote efficiency, we shift early vision processing into the analog domain. This results in RedEye, an analog convolutional image sensor that performs layers of a convolutional neural network in the analog domain before quantization. We design RedEye to mitigate analog design complexity, using a modular column-parallel design to promote physical design reuse and algorithmic cyclic reuse. RedEye uses programmable mechanisms to admit noise for tunable energy reduction. Compared to conventional systems, RedEye reports an 85% reduction in sensor energy, 73% reduction in cloudlet-based system energy, and a 45% reduction in computation-based system energy.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"43 1","pages":"255-266"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":"{\"title\":\"RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision\",\"authors\":\"R. Likamwa, Yunhui Hou, Yuan Gao, M. Polansky, Lin Zhong\",\"doi\":\"10.1145/3007787.3001164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous mobile vision is limited by the inability to efficiently capture image frames and process vision features. This is largely due to the energy burden of analog readout circuitry, data traffic, and intensive computation. To promote efficiency, we shift early vision processing into the analog domain. This results in RedEye, an analog convolutional image sensor that performs layers of a convolutional neural network in the analog domain before quantization. We design RedEye to mitigate analog design complexity, using a modular column-parallel design to promote physical design reuse and algorithmic cyclic reuse. RedEye uses programmable mechanisms to admit noise for tunable energy reduction. Compared to conventional systems, RedEye reports an 85% reduction in sensor energy, 73% reduction in cloudlet-based system energy, and a 45% reduction in computation-based system energy.\",\"PeriodicalId\":6634,\"journal\":{\"name\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"43 1\",\"pages\":\"255-266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"186\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007787.3001164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 186

摘要

连续移动视觉受到无法有效捕获图像帧和处理视觉特征的限制。这主要是由于模拟读出电路、数据流量和密集计算的能量负担。为了提高效率,我们将早期的视觉处理转移到模拟域。这就产生了RedEye,一种模拟卷积图像传感器,在量化之前在模拟域中执行卷积神经网络的层。我们设计RedEye来降低模拟设计的复杂性,使用模块化列并行设计来促进物理设计重用和算法循环重用。RedEye使用可编程的机制,以承认噪音可调的能源减少。与传统系统相比,RedEye的传感器能耗降低85%,基于云的系统能耗降低73%,基于计算的系统能耗降低45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RedEye: Analog ConvNet Image Sensor Architecture for Continuous Mobile Vision
Continuous mobile vision is limited by the inability to efficiently capture image frames and process vision features. This is largely due to the energy burden of analog readout circuitry, data traffic, and intensive computation. To promote efficiency, we shift early vision processing into the analog domain. This results in RedEye, an analog convolutional image sensor that performs layers of a convolutional neural network in the analog domain before quantization. We design RedEye to mitigate analog design complexity, using a modular column-parallel design to promote physical design reuse and algorithmic cyclic reuse. RedEye uses programmable mechanisms to admit noise for tunable energy reduction. Compared to conventional systems, RedEye reports an 85% reduction in sensor energy, 73% reduction in cloudlet-based system energy, and a 45% reduction in computation-based system energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信