可用于分解大费马数的算法

Xingbo Wang
{"title":"可用于分解大费马数的算法","authors":"Xingbo Wang","doi":"10.17706/jsw.15.3.86-97","DOIUrl":null,"url":null,"abstract":"The paper proves that an odd composite integer N can be factorized in at most O( 0.125u (log2N)) searching steps if N has a divisor of the form 2u +1 or 2u-1 with  >1 being a positive integer and u>1 being an odd integer. Theorems and corollaries are proved with detail mathematical reasoning. Algorithms to factorize the kind of odd composite integers are designed and tested with certain Fermat numbers. The results in the paper might be helpful to factorize certain big Fermat numbers.","PeriodicalId":11452,"journal":{"name":"e Informatica Softw. Eng. J.","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Algorithm Available for Factoring Big Fermat Numbers\",\"authors\":\"Xingbo Wang\",\"doi\":\"10.17706/jsw.15.3.86-97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proves that an odd composite integer N can be factorized in at most O( 0.125u (log2N)) searching steps if N has a divisor of the form 2u +1 or 2u-1 with  >1 being a positive integer and u>1 being an odd integer. Theorems and corollaries are proved with detail mathematical reasoning. Algorithms to factorize the kind of odd composite integers are designed and tested with certain Fermat numbers. The results in the paper might be helpful to factorize certain big Fermat numbers.\",\"PeriodicalId\":11452,\"journal\":{\"name\":\"e Informatica Softw. Eng. J.\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"e Informatica Softw. Eng. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17706/jsw.15.3.86-97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"e Informatica Softw. Eng. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17706/jsw.15.3.86-97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

证明了如果N有一个2u +1或2u-1形式的除数,且>1为正整数,u>1为奇数,则奇数复合整数N最多可被分解为O(0.125u (log2N))个搜索步骤。用详细的数学推理证明了定理和推论。设计了一类奇合数的因式分解算法,并在一定的费马数下进行了测试。本文的结果可能对某些大费马数的因式分解有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm Available for Factoring Big Fermat Numbers
The paper proves that an odd composite integer N can be factorized in at most O( 0.125u (log2N)) searching steps if N has a divisor of the form 2u +1 or 2u-1 with  >1 being a positive integer and u>1 being an odd integer. Theorems and corollaries are proved with detail mathematical reasoning. Algorithms to factorize the kind of odd composite integers are designed and tested with certain Fermat numbers. The results in the paper might be helpful to factorize certain big Fermat numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信