{"title":"基本特征函数的时滞相关稳定性条件","authors":"H. Matsunaga","doi":"10.5817/am2023-1-77","DOIUrl":null,"url":null,"abstract":". This paper is devoted to the investigation on the stability for two characteristic functions f 1 ( z ) = z 2 + pe − zτ + q and f 2 ( z ) = z 2 + pze − zτ + q , where p and q are real numbers and τ > 0. The obtained theorems describe the explicit stability dependence on the changing delay τ . Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delay-dependent stability conditions for fundamental characteristic functions\",\"authors\":\"H. Matsunaga\",\"doi\":\"10.5817/am2023-1-77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is devoted to the investigation on the stability for two characteristic functions f 1 ( z ) = z 2 + pe − zτ + q and f 2 ( z ) = z 2 + pze − zτ + q , where p and q are real numbers and τ > 0. The obtained theorems describe the explicit stability dependence on the changing delay τ . Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2023-1-77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2023-1-77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Delay-dependent stability conditions for fundamental characteristic functions
. This paper is devoted to the investigation on the stability for two characteristic functions f 1 ( z ) = z 2 + pe − zτ + q and f 2 ( z ) = z 2 + pze − zτ + q , where p and q are real numbers and τ > 0. The obtained theorems describe the explicit stability dependence on the changing delay τ . Our results are applied to some special cases of a linear differential system with delay in the diagonal terms and delay-dependent stability conditions are obtained.
期刊介绍:
Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.