{"title":"Vlasov-Poisson系统的Gevrey正则性","authors":"Renato Velozo Ruiz","doi":"10.1016/j.anihpc.2020.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>We prove propagation of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey regularity <span><math><mo>(</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span> for the Vlasov-Poisson system on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> using a Fourier space method in analogy to the results proved for the 2D-Euler system in <span>[20]</span> and <span>[23]</span>. More precisely, we give quantitative estimates for the growth of the <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey norm and decay of the regularity radius for the solution of the system in terms of the force field and the volume of the support in the velocity variable of the distribution of matter. As an application, we show global existence of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey solutions (<span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>) for the Vlasov-Poisson system in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Furthermore, the propagation of Gevrey regularity can be easily modified to obtain the same result in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In particular, this implies global existence of analytic <span><math><mo>(</mo><mi>s</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey solutions (<span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>) for the Vlasov-Poisson system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.006","citationCount":"0","resultStr":"{\"title\":\"Gevrey regularity for the Vlasov-Poisson system\",\"authors\":\"Renato Velozo Ruiz\",\"doi\":\"10.1016/j.anihpc.2020.10.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove propagation of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey regularity <span><math><mo>(</mo><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo><mo>)</mo></math></span> for the Vlasov-Poisson system on <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> using a Fourier space method in analogy to the results proved for the 2D-Euler system in <span>[20]</span> and <span>[23]</span>. More precisely, we give quantitative estimates for the growth of the <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey norm and decay of the regularity radius for the solution of the system in terms of the force field and the volume of the support in the velocity variable of the distribution of matter. As an application, we show global existence of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey solutions (<span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>) for the Vlasov-Poisson system in <span><math><msup><mrow><mi>T</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Furthermore, the propagation of Gevrey regularity can be easily modified to obtain the same result in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. In particular, this implies global existence of analytic <span><math><mo>(</mo><mi>s</mi><mo>=</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mfrac></math></span>-Gevrey solutions (<span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>) for the Vlasov-Poisson system in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.anihpc.2020.10.006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0294144920301116\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144920301116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We prove propagation of -Gevrey regularity for the Vlasov-Poisson system on using a Fourier space method in analogy to the results proved for the 2D-Euler system in [20] and [23]. More precisely, we give quantitative estimates for the growth of the -Gevrey norm and decay of the regularity radius for the solution of the system in terms of the force field and the volume of the support in the velocity variable of the distribution of matter. As an application, we show global existence of -Gevrey solutions () for the Vlasov-Poisson system in . Furthermore, the propagation of Gevrey regularity can be easily modified to obtain the same result in . In particular, this implies global existence of analytic and -Gevrey solutions () for the Vlasov-Poisson system in .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.