最小裁剪二乘模糊神经网络的研究

Hsu-Kun Wu, J. Hsieh, K. Yu
{"title":"最小裁剪二乘模糊神经网络的研究","authors":"Hsu-Kun Wu, J. Hsieh, K. Yu","doi":"10.1109/ISKE.2010.5680809","DOIUrl":null,"url":null,"abstract":"In this paper, least trimmed squares (LTS) estimators, frequently used in robust (or resistant) linear parametric regression problems, will be generalized to nonparametric LTS-fuzzy neural networks (LTS-FNNs) for nonlinear regression problems. Emphasis is put particularly on the robustness against outliers. This provides alternative learning machines when faced with general nonlinear learning problems. Simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) algorithms will be provided. Some numerical examples will be provided to compare the robustness against outliers for usual fuzzy neural networks (FNNs) and the proposed LTS-FNNs. Simulation results show that the LTS-FNNs proposed in this paper have good robustness against outliers.","PeriodicalId":6417,"journal":{"name":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","volume":"95 1","pages":"123-127"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Study on least trimmed squares fuzzy neural networks\",\"authors\":\"Hsu-Kun Wu, J. Hsieh, K. Yu\",\"doi\":\"10.1109/ISKE.2010.5680809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, least trimmed squares (LTS) estimators, frequently used in robust (or resistant) linear parametric regression problems, will be generalized to nonparametric LTS-fuzzy neural networks (LTS-FNNs) for nonlinear regression problems. Emphasis is put particularly on the robustness against outliers. This provides alternative learning machines when faced with general nonlinear learning problems. Simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) algorithms will be provided. Some numerical examples will be provided to compare the robustness against outliers for usual fuzzy neural networks (FNNs) and the proposed LTS-FNNs. Simulation results show that the LTS-FNNs proposed in this paper have good robustness against outliers.\",\"PeriodicalId\":6417,\"journal\":{\"name\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"volume\":\"95 1\",\"pages\":\"123-127\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2010.5680809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2010.5680809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将常用于鲁棒(或抗)线性参数回归问题的最小裁剪二乘(LTS)估计推广到非线性回归问题的非参数LTS-模糊神经网络中。重点特别放在对异常值的鲁棒性上。当面对一般的非线性学习问题时,这提供了另一种学习机器。给出了基于梯度下降和迭代加权最小二乘(IRLS)算法的简单权值更新规则。本文将提供一些数值例子来比较通常的模糊神经网络(fnn)和所提出的lts - fnn对异常值的鲁棒性。仿真结果表明,本文提出的lts - fnn对异常值具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on least trimmed squares fuzzy neural networks
In this paper, least trimmed squares (LTS) estimators, frequently used in robust (or resistant) linear parametric regression problems, will be generalized to nonparametric LTS-fuzzy neural networks (LTS-FNNs) for nonlinear regression problems. Emphasis is put particularly on the robustness against outliers. This provides alternative learning machines when faced with general nonlinear learning problems. Simple weight updating rules based on gradient descent and iteratively reweighted least squares (IRLS) algorithms will be provided. Some numerical examples will be provided to compare the robustness against outliers for usual fuzzy neural networks (FNNs) and the proposed LTS-FNNs. Simulation results show that the LTS-FNNs proposed in this paper have good robustness against outliers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信