方差类gamma模型下的期权定价

Q3 Mathematics
M. Gardini, P. Sabino
{"title":"方差类gamma模型下的期权定价","authors":"M. Gardini, P. Sabino","doi":"10.1080/1350486X.2023.2248791","DOIUrl":null,"url":null,"abstract":"In this article, we focus on the pricing of exchange options when the risk-neutral dynamic of log-prices follows either the well-known variance gamma or the recent variance gamma++ process introduced in Gardini et al. (2022. “The Variance Gamma++ Process and Applications to Energy Markets.” Applied Stochastic Models in Business and Industry 38 (2): 391–418. https://doi.org/10.1002/asmb.v38.2.). In particular, for the former model we can derive a Margrabe's type formula whereas for the latter one we can write an ‘integral free’ formula. Furthermore, we show how to construct a general multidimensional versions of the variance gamma++ processes preserving both the mathematical and numerical tractabilities. Finally we apply the derived models to German and French energy power markets: we calibrate their parameters using real market data and we accordingly evaluate exchange options with the derived closed formulas, Fourier based methods and Monte Carlo techniques.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"16 1","pages":"494 - 521"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exchange Option Pricing Under Variance Gamma-Like Models\",\"authors\":\"M. Gardini, P. Sabino\",\"doi\":\"10.1080/1350486X.2023.2248791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we focus on the pricing of exchange options when the risk-neutral dynamic of log-prices follows either the well-known variance gamma or the recent variance gamma++ process introduced in Gardini et al. (2022. “The Variance Gamma++ Process and Applications to Energy Markets.” Applied Stochastic Models in Business and Industry 38 (2): 391–418. https://doi.org/10.1002/asmb.v38.2.). In particular, for the former model we can derive a Margrabe's type formula whereas for the latter one we can write an ‘integral free’ formula. Furthermore, we show how to construct a general multidimensional versions of the variance gamma++ processes preserving both the mathematical and numerical tractabilities. Finally we apply the derived models to German and French energy power markets: we calibrate their parameters using real market data and we accordingly evaluate exchange options with the derived closed formulas, Fourier based methods and Monte Carlo techniques.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"16 1\",\"pages\":\"494 - 521\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2023.2248791\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2023.2248791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们关注的是当对数价格的风险中性动态遵循众所周知的方差伽玛或Gardini等人(2022)引入的最新方差伽玛++过程时,外汇期权的定价。“方差伽玛++过程及其在能源市场中的应用”随机模型在商业和工业中的应用,38(2):391-418。https://doi.org/10.1002/asmb.v38.2)。特别地,对于前一个模型,我们可以推导出一个马尔格拉贝式公式,而对于后一个模型,我们可以写出一个“无积分”公式。此外,我们展示了如何构建方差伽玛++过程的一般多维版本,同时保留了数学和数值的可追溯性。最后,我们将导出的模型应用于德国和法国的能源电力市场:我们使用实际市场数据校准其参数,并相应地使用导出的封闭公式,基于傅里叶的方法和蒙特卡罗技术评估交换期权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exchange Option Pricing Under Variance Gamma-Like Models
In this article, we focus on the pricing of exchange options when the risk-neutral dynamic of log-prices follows either the well-known variance gamma or the recent variance gamma++ process introduced in Gardini et al. (2022. “The Variance Gamma++ Process and Applications to Energy Markets.” Applied Stochastic Models in Business and Industry 38 (2): 391–418. https://doi.org/10.1002/asmb.v38.2.). In particular, for the former model we can derive a Margrabe's type formula whereas for the latter one we can write an ‘integral free’ formula. Furthermore, we show how to construct a general multidimensional versions of the variance gamma++ processes preserving both the mathematical and numerical tractabilities. Finally we apply the derived models to German and French energy power markets: we calibrate their parameters using real market data and we accordingly evaluate exchange options with the derived closed formulas, Fourier based methods and Monte Carlo techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信