模态逻辑对偶理论的新方向

L. Carai
{"title":"模态逻辑对偶理论的新方向","authors":"L. Carai","doi":"10.1017/bsl.2021.52","DOIUrl":null,"url":null,"abstract":"Abstract In this work we present some new contributions towards two different directions in the study of modal logic. First we employ tense logics to provide a temporal interpretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This is achieved by modifying the Gödel translation and resolves an asymmetry between the standard interpretation of intuitionistic quantifiers. Then we generalize the classic Gelfand–Naimark–Stone duality between compact Hausdorff spaces and uniformly complete bounded archimedean \n$\\ell $\n -algebras to a duality encompassing compact Hausdorff spaces with continuous relations. This leads to the notion of modal operators on bounded archimedean \n$\\ell $\n -algebras and in particular on rings of continuous real-valued functions on compact Hausdorff spaces. This new duality is also a generalization of the classic Jónsson-Tarski duality in modal logic. Abstract taken directly from the thesis. E-mail: lcarai@unisa.it URL: https://www.proquest.com/openview/5d284dbfb954383da9364149fa312b6f/1?pq-origsite=gscholar&cbl=18750&diss=y","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Directions in Duality Theory for Modal Logic\",\"authors\":\"L. Carai\",\"doi\":\"10.1017/bsl.2021.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we present some new contributions towards two different directions in the study of modal logic. First we employ tense logics to provide a temporal interpretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This is achieved by modifying the Gödel translation and resolves an asymmetry between the standard interpretation of intuitionistic quantifiers. Then we generalize the classic Gelfand–Naimark–Stone duality between compact Hausdorff spaces and uniformly complete bounded archimedean \\n$\\\\ell $\\n -algebras to a duality encompassing compact Hausdorff spaces with continuous relations. This leads to the notion of modal operators on bounded archimedean \\n$\\\\ell $\\n -algebras and in particular on rings of continuous real-valued functions on compact Hausdorff spaces. This new duality is also a generalization of the classic Jónsson-Tarski duality in modal logic. Abstract taken directly from the thesis. E-mail: lcarai@unisa.it URL: https://www.proquest.com/openview/5d284dbfb954383da9364149fa312b6f/1?pq-origsite=gscholar&cbl=18750&diss=y\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2021.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2021.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们对模态逻辑研究的两个不同方向提出了一些新的贡献。首先,我们使用时态逻辑为直觉量词提供时间解释,如“总是在将来”和“过去的某个时候”。这是通过修改Gödel翻译来实现的,并解决了直觉量词的标准解释之间的不对称。然后将紧Hausdorff空间与一致完全有界阿基米德代数之间的经典Gelfand-Naimark-Stone对偶推广到包含连续关系的紧Hausdorff空间的对偶。这就引出了有界阿基米德代数上的模态算子的概念,特别是紧化Hausdorff空间上的连续实值函数环上的模态算子。这种新的对偶也是模态逻辑中经典的Jónsson-Tarski对偶的推广。摘要直接摘自论文。电子邮件:lcarai@unisa.it URL: https://www.proquest.com/openview/5d284dbfb954383da9364149fa312b6f/1?pq-origsite=gscholar&cbl=18750&diss=y
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Directions in Duality Theory for Modal Logic
Abstract In this work we present some new contributions towards two different directions in the study of modal logic. First we employ tense logics to provide a temporal interpretation of intuitionistic quantifiers as “always in the future” and “sometime in the past.” This is achieved by modifying the Gödel translation and resolves an asymmetry between the standard interpretation of intuitionistic quantifiers. Then we generalize the classic Gelfand–Naimark–Stone duality between compact Hausdorff spaces and uniformly complete bounded archimedean $\ell $ -algebras to a duality encompassing compact Hausdorff spaces with continuous relations. This leads to the notion of modal operators on bounded archimedean $\ell $ -algebras and in particular on rings of continuous real-valued functions on compact Hausdorff spaces. This new duality is also a generalization of the classic Jónsson-Tarski duality in modal logic. Abstract taken directly from the thesis. E-mail: lcarai@unisa.it URL: https://www.proquest.com/openview/5d284dbfb954383da9364149fa312b6f/1?pq-origsite=gscholar&cbl=18750&diss=y
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信