基于多通道嵌入注意力的新闻标题讽刺识别

Azika Syahputra Azwar, Suharjito Suharjito
{"title":"基于多通道嵌入注意力的新闻标题讽刺识别","authors":"Azika Syahputra Azwar, Suharjito Suharjito","doi":"10.15408/jti.v15i2.28417","DOIUrl":null,"url":null,"abstract":"Sarcasm is a statement that conveys an opposing viewpoint via positive or exaggeratedly positive phrases. Due to this intentional ambiguity, sarcasm identification has become one of the important factors in sentiment analysis that make many researchers in natural language processing intensively study sarcasm detection. This research is using multiple channels embedding the attention bidirectional long-short memory (MCEA-BLSTM) model that explored sarcasm detection in news headlines and has different approach from previous research-developed models that lexical, semantic, and pragmatic properties. This research found that multiple channels embedding attention mechanism improve the performance of BLSTM, making it superior to other models. The proposed method achieves 96.64% accuracy with an f-measure of 97%","PeriodicalId":52586,"journal":{"name":"Jurnal Sarjana Teknik Informatika","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sarcasm Recognition on News Headlines Using Multiple Channel Embedding Attention BLSTM\",\"authors\":\"Azika Syahputra Azwar, Suharjito Suharjito\",\"doi\":\"10.15408/jti.v15i2.28417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sarcasm is a statement that conveys an opposing viewpoint via positive or exaggeratedly positive phrases. Due to this intentional ambiguity, sarcasm identification has become one of the important factors in sentiment analysis that make many researchers in natural language processing intensively study sarcasm detection. This research is using multiple channels embedding the attention bidirectional long-short memory (MCEA-BLSTM) model that explored sarcasm detection in news headlines and has different approach from previous research-developed models that lexical, semantic, and pragmatic properties. This research found that multiple channels embedding attention mechanism improve the performance of BLSTM, making it superior to other models. The proposed method achieves 96.64% accuracy with an f-measure of 97%\",\"PeriodicalId\":52586,\"journal\":{\"name\":\"Jurnal Sarjana Teknik Informatika\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Sarjana Teknik Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15408/jti.v15i2.28417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Sarjana Teknik Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15408/jti.v15i2.28417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讽刺是一种通过积极的或夸张的积极的短语表达相反观点的陈述。由于这种有意的歧义,讽刺识别成为情感分析的重要因素之一,使得许多自然语言处理研究者对讽刺检测进行了深入的研究。本研究采用多通道嵌入的注意双向长-短记忆(MCEA-BLSTM)模型来探索新闻标题中的讽刺语检测,该模型与以往研究的词汇、语义和语用特征模型不同。本研究发现,多通道嵌入注意机制提高了BLSTM的性能,使其优于其他模型。该方法的准确率为96.64%,f-measure为97%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sarcasm Recognition on News Headlines Using Multiple Channel Embedding Attention BLSTM
Sarcasm is a statement that conveys an opposing viewpoint via positive or exaggeratedly positive phrases. Due to this intentional ambiguity, sarcasm identification has become one of the important factors in sentiment analysis that make many researchers in natural language processing intensively study sarcasm detection. This research is using multiple channels embedding the attention bidirectional long-short memory (MCEA-BLSTM) model that explored sarcasm detection in news headlines and has different approach from previous research-developed models that lexical, semantic, and pragmatic properties. This research found that multiple channels embedding attention mechanism improve the performance of BLSTM, making it superior to other models. The proposed method achieves 96.64% accuracy with an f-measure of 97%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
15
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信