Shinnosuke Yamaoka, T. Nozaki, D. Yashiro, K. Ohnishi
{"title":"基于扰动观测器和反作用力观测器的叠加式压电驱动器加速度控制","authors":"Shinnosuke Yamaoka, T. Nozaki, D. Yashiro, K. Ohnishi","doi":"10.1109/AMC.2012.6197129","DOIUrl":null,"url":null,"abstract":"Stacked piezoelectric actuators are suitable for micro manipulation since it has a high positional resolution and large generative force. However, it is difficult to control acceleration of piezoelectric actuator because of its hysteresis characteristic and spring characteristic. Therefore in this paper, piezo disturbance observer (PDOB) is proposed. Because PDOB treats hysteresis characteristic and spring characteristic as disturbance and compensates these elements, acceleration control is achieved. In addition, piezo reaction force observer (PRFOB) is proposed. By eliminating spring force from disturbance, PRFOB estimates the reaction force without utilizing any force sensors. Validities of PDOB and PRFOB are verified by experiments. Finally, experiment of micro-macro bilateral control (MMBC) constructed a master system and slave system is performed. The master system is a linear motor with conventional disturbance observer (DOB) and reaction force observer (RFOB). The slave system is a stacked piezoelectric actuator with PDOB and PRFOB. It achieved MMBC between a linear motor and a piezoelectric actuator.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"17 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Acceleration control of stacked piezoelectric actuator utilizing disturbance observer and reaction force observer\",\"authors\":\"Shinnosuke Yamaoka, T. Nozaki, D. Yashiro, K. Ohnishi\",\"doi\":\"10.1109/AMC.2012.6197129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stacked piezoelectric actuators are suitable for micro manipulation since it has a high positional resolution and large generative force. However, it is difficult to control acceleration of piezoelectric actuator because of its hysteresis characteristic and spring characteristic. Therefore in this paper, piezo disturbance observer (PDOB) is proposed. Because PDOB treats hysteresis characteristic and spring characteristic as disturbance and compensates these elements, acceleration control is achieved. In addition, piezo reaction force observer (PRFOB) is proposed. By eliminating spring force from disturbance, PRFOB estimates the reaction force without utilizing any force sensors. Validities of PDOB and PRFOB are verified by experiments. Finally, experiment of micro-macro bilateral control (MMBC) constructed a master system and slave system is performed. The master system is a linear motor with conventional disturbance observer (DOB) and reaction force observer (RFOB). The slave system is a stacked piezoelectric actuator with PDOB and PRFOB. It achieved MMBC between a linear motor and a piezoelectric actuator.\",\"PeriodicalId\":6439,\"journal\":{\"name\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"17 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2012.6197129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acceleration control of stacked piezoelectric actuator utilizing disturbance observer and reaction force observer
Stacked piezoelectric actuators are suitable for micro manipulation since it has a high positional resolution and large generative force. However, it is difficult to control acceleration of piezoelectric actuator because of its hysteresis characteristic and spring characteristic. Therefore in this paper, piezo disturbance observer (PDOB) is proposed. Because PDOB treats hysteresis characteristic and spring characteristic as disturbance and compensates these elements, acceleration control is achieved. In addition, piezo reaction force observer (PRFOB) is proposed. By eliminating spring force from disturbance, PRFOB estimates the reaction force without utilizing any force sensors. Validities of PDOB and PRFOB are verified by experiments. Finally, experiment of micro-macro bilateral control (MMBC) constructed a master system and slave system is performed. The master system is a linear motor with conventional disturbance observer (DOB) and reaction force observer (RFOB). The slave system is a stacked piezoelectric actuator with PDOB and PRFOB. It achieved MMBC between a linear motor and a piezoelectric actuator.