预测客户的交叉购买决策:两阶段机器学习方法

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
M. Kilinç, Robert Rohrhirsch
{"title":"预测客户的交叉购买决策:两阶段机器学习方法","authors":"M. Kilinç, Robert Rohrhirsch","doi":"10.1080/2573234X.2022.2128447","DOIUrl":null,"url":null,"abstract":"ABSTRACT Predicting a customer’s cross-buying behaviour is a challenging problem for many organisations. In this paper, we propose a novel two-stage cross-buying prediction framework by integrating machine learning, feature engineering, and interpretation techniques. Specifically, the first stage aims to train an accurate complex black-box classification model with cross-validation and hyperparameter tuning. Then, the next stage uses the top ten most important predictors of the black-box model to obtain a simple rule-based interpretable model. We use a publicly available dataset published on the Harvard Dataverse to provide a practical case study. The results show that the rule-based model has a predictive performance as high as the complex model.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"20 1","pages":"180 - 187"},"PeriodicalIF":1.7000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting customers’ cross-buying decisions: a two-stage machine learning approach\",\"authors\":\"M. Kilinç, Robert Rohrhirsch\",\"doi\":\"10.1080/2573234X.2022.2128447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Predicting a customer’s cross-buying behaviour is a challenging problem for many organisations. In this paper, we propose a novel two-stage cross-buying prediction framework by integrating machine learning, feature engineering, and interpretation techniques. Specifically, the first stage aims to train an accurate complex black-box classification model with cross-validation and hyperparameter tuning. Then, the next stage uses the top ten most important predictors of the black-box model to obtain a simple rule-based interpretable model. We use a publicly available dataset published on the Harvard Dataverse to provide a practical case study. The results show that the rule-based model has a predictive performance as high as the complex model.\",\"PeriodicalId\":36417,\"journal\":{\"name\":\"Journal of Business Analytics\",\"volume\":\"20 1\",\"pages\":\"180 - 187\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/2573234X.2022.2128447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2022.2128447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

预测客户的交叉购买行为对许多组织来说是一个具有挑战性的问题。在本文中,我们通过集成机器学习、特征工程和解释技术,提出了一种新的两阶段交叉购买预测框架。具体而言,第一阶段旨在通过交叉验证和超参数调优训练精确的复杂黑盒分类模型。然后,下一阶段使用黑箱模型的前十个最重要的预测因子来获得一个简单的基于规则的可解释模型。我们使用在哈佛数据库上发布的公开可用数据集来提供一个实际的案例研究。结果表明,基于规则的模型具有与复杂模型相当的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting customers’ cross-buying decisions: a two-stage machine learning approach
ABSTRACT Predicting a customer’s cross-buying behaviour is a challenging problem for many organisations. In this paper, we propose a novel two-stage cross-buying prediction framework by integrating machine learning, feature engineering, and interpretation techniques. Specifically, the first stage aims to train an accurate complex black-box classification model with cross-validation and hyperparameter tuning. Then, the next stage uses the top ten most important predictors of the black-box model to obtain a simple rule-based interpretable model. We use a publicly available dataset published on the Harvard Dataverse to provide a practical case study. The results show that the rule-based model has a predictive performance as high as the complex model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信