映射类组动作的刚性

IF 2 1区 数学
Kathryn Mann, M. Wolff
{"title":"映射类组动作的刚性","authors":"Kathryn Mann, M. Wolff","doi":"10.2140/GT.2020.24.1211","DOIUrl":null,"url":null,"abstract":"The mapping class group $\\mathrm{Mod}_{g, 1}$ of a surface with one marked point can be identified with an index two subgroup of $\\mathrm{Aut}(\\pi_1 \\Sigma_g)$. For a surface of genus $g \\geq 2$, we show that any action of $\\mathrm{Mod}_{g, 1}$ on the circle is either semi-conjugate to its natural action on the Gromov boundary of $\\pi_1 \\Sigma_g$, or factors through a finite cyclic group. For $g \\geq 3$, all finite actions are trivial. This answers a question of Farb.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"16 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Rigidity of mapping class group actions on\\nS1\",\"authors\":\"Kathryn Mann, M. Wolff\",\"doi\":\"10.2140/GT.2020.24.1211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mapping class group $\\\\mathrm{Mod}_{g, 1}$ of a surface with one marked point can be identified with an index two subgroup of $\\\\mathrm{Aut}(\\\\pi_1 \\\\Sigma_g)$. For a surface of genus $g \\\\geq 2$, we show that any action of $\\\\mathrm{Mod}_{g, 1}$ on the circle is either semi-conjugate to its natural action on the Gromov boundary of $\\\\pi_1 \\\\Sigma_g$, or factors through a finite cyclic group. For $g \\\\geq 3$, all finite actions are trivial. This answers a question of Farb.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2020.24.1211\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1211","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

具有一个标记点的曲面的映射类组$\mathrm{Mod}_{g, 1}$可以用$\mathrm{Aut}(\pi_1 \Sigma_g)$的索引2子组来标识。对于一个属$g \geq 2$的曲面,我们证明了$\mathrm{Mod}_{g, 1}$在圆上的任何作用或者是它在$\pi_1 \Sigma_g$的Gromov边界上的自然作用的半共轭,或者是通过一个有限循环群的因子。对于$g \geq 3$,所有有限的动作都是微不足道的。这回答了法布的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of mapping class group actions on S1
The mapping class group $\mathrm{Mod}_{g, 1}$ of a surface with one marked point can be identified with an index two subgroup of $\mathrm{Aut}(\pi_1 \Sigma_g)$. For a surface of genus $g \geq 2$, we show that any action of $\mathrm{Mod}_{g, 1}$ on the circle is either semi-conjugate to its natural action on the Gromov boundary of $\pi_1 \Sigma_g$, or factors through a finite cyclic group. For $g \geq 3$, all finite actions are trivial. This answers a question of Farb.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信