目标跟踪中意图预测的贝叶斯框架

B. I. Ahmad, P. Langdon, S. Godsill
{"title":"目标跟踪中意图预测的贝叶斯框架","authors":"B. I. Ahmad, P. Langdon, S. Godsill","doi":"10.1109/ICASSP.2019.8682603","DOIUrl":null,"url":null,"abstract":"Engineering Department, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ In this paper, we introduce a generic Bayesian framework for inferring the intent of a tracked object, as early as possible, based on the available partial sensory observations. It treats the prediction problem, i.e. not estimating the object state such as position, within an object tracking formulation. This leads to a low-complexity implementation of the inference routine with minimal training requirements. The proposed approach utilises suitable stochastic, namely linear Gaussian, models to capture long term dependencies in the object trajectory as dictated by intent. Numerical examples are shown to demonstrate the efficacy of this framework.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"89 1","pages":"8439-8443"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Bayesian Framework for Intent Prediction in Object Tracking\",\"authors\":\"B. I. Ahmad, P. Langdon, S. Godsill\",\"doi\":\"10.1109/ICASSP.2019.8682603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Engineering Department, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ In this paper, we introduce a generic Bayesian framework for inferring the intent of a tracked object, as early as possible, based on the available partial sensory observations. It treats the prediction problem, i.e. not estimating the object state such as position, within an object tracking formulation. This leads to a low-complexity implementation of the inference routine with minimal training requirements. The proposed approach utilises suitable stochastic, namely linear Gaussian, models to capture long term dependencies in the object trajectory as dictated by intent. Numerical examples are shown to demonstrate the efficacy of this framework.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"89 1\",\"pages\":\"8439-8443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们引入了一个通用的贝叶斯框架,用于根据可用的部分感官观察,尽早推断跟踪对象的意图。它在目标跟踪公式中处理预测问题,即不估计目标状态(如位置)。这使得推理例程实现的复杂性较低,训练需求最少。所提出的方法利用合适的随机,即线性高斯,模型来捕获长期依赖的目标轨迹,如指示的意图。数值算例验证了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian Framework for Intent Prediction in Object Tracking
Engineering Department, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 1PZ In this paper, we introduce a generic Bayesian framework for inferring the intent of a tracked object, as early as possible, based on the available partial sensory observations. It treats the prediction problem, i.e. not estimating the object state such as position, within an object tracking formulation. This leads to a low-complexity implementation of the inference routine with minimal training requirements. The proposed approach utilises suitable stochastic, namely linear Gaussian, models to capture long term dependencies in the object trajectory as dictated by intent. Numerical examples are shown to demonstrate the efficacy of this framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信