一个简单的图重建算法

Pub Date : 2021-12-08 DOI:10.1002/rsa.21143
Claire Mathieu, Hang Zhou
{"title":"一个简单的图重建算法","authors":"Claire Mathieu, Hang Zhou","doi":"10.1002/rsa.21143","DOIUrl":null,"url":null,"abstract":"How efficiently can we find an unknown graph using distance queries between its vertices? We assume that the unknown graph is connected, unweighted, and has bounded degree. The goal is to find every edge in the graph. This problem admits a reconstruction algorithm based on multi‐phase Voronoi‐cell decomposition and using Õ(n3/2)$$ \\overset{\\widetilde }{O}\\left({n}^{3/2}\\right) $$ distance queries. In our work, we analyze a simple reconstruction algorithm. We show that, on random Δ$$ \\Delta $$ ‐regular graphs, our algorithm uses Õ(n)$$ \\overset{\\widetilde }{O}(n) $$ distance queries. As by‐products, with high probability, we can reconstruct those graphs using log2n$$ {\\log}^2n $$ queries to an all‐distances oracle or Õ(n)$$ \\overset{\\widetilde }{O}(n) $$ queries to a betweenness oracle, and we bound the metric dimension of those graphs by log2n$$ {\\log}^2n $$ . Our reconstruction algorithm has a very simple structure, and is highly parallelizable. On general graphs of bounded degree, our reconstruction algorithm has subquadratic query complexity.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A simple algorithm for graph reconstruction\",\"authors\":\"Claire Mathieu, Hang Zhou\",\"doi\":\"10.1002/rsa.21143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How efficiently can we find an unknown graph using distance queries between its vertices? We assume that the unknown graph is connected, unweighted, and has bounded degree. The goal is to find every edge in the graph. This problem admits a reconstruction algorithm based on multi‐phase Voronoi‐cell decomposition and using Õ(n3/2)$$ \\\\overset{\\\\widetilde }{O}\\\\left({n}^{3/2}\\\\right) $$ distance queries. In our work, we analyze a simple reconstruction algorithm. We show that, on random Δ$$ \\\\Delta $$ ‐regular graphs, our algorithm uses Õ(n)$$ \\\\overset{\\\\widetilde }{O}(n) $$ distance queries. As by‐products, with high probability, we can reconstruct those graphs using log2n$$ {\\\\log}^2n $$ queries to an all‐distances oracle or Õ(n)$$ \\\\overset{\\\\widetilde }{O}(n) $$ queries to a betweenness oracle, and we bound the metric dimension of those graphs by log2n$$ {\\\\log}^2n $$ . Our reconstruction algorithm has a very simple structure, and is highly parallelizable. On general graphs of bounded degree, our reconstruction algorithm has subquadratic query complexity.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/rsa.21143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

使用顶点之间的距离查询来查找未知图的效率如何?我们假设未知图是连通的、无权的、有界度的。目标是找出图中的每条边。该问题允许基于多相Voronoi - cell分解和使用Õ(n3/2) $$ \overset{\widetilde }{O}\left({n}^{3/2}\right) $$距离查询的重构算法。在我们的工作中,我们分析了一个简单的重建算法。我们表明,在随机Δ $$ \Delta $$‐正则图上,我们的算法使用Õ(n) $$ \overset{\widetilde }{O}(n) $$距离查询。作为副产物,在高概率下,我们可以使用log2n $$ {\log}^2n $$查询全距离oracle或Õ(n) $$ \overset{\widetilde }{O}(n) $$查询间性oracle来重建这些图,并通过log2n $$ {\log}^2n $$绑定这些图的度量维度。我们的重构算法结构简单,具有很高的并行性。对于一般有界度图,重构算法具有次二次查询复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A simple algorithm for graph reconstruction
How efficiently can we find an unknown graph using distance queries between its vertices? We assume that the unknown graph is connected, unweighted, and has bounded degree. The goal is to find every edge in the graph. This problem admits a reconstruction algorithm based on multi‐phase Voronoi‐cell decomposition and using Õ(n3/2)$$ \overset{\widetilde }{O}\left({n}^{3/2}\right) $$ distance queries. In our work, we analyze a simple reconstruction algorithm. We show that, on random Δ$$ \Delta $$ ‐regular graphs, our algorithm uses Õ(n)$$ \overset{\widetilde }{O}(n) $$ distance queries. As by‐products, with high probability, we can reconstruct those graphs using log2n$$ {\log}^2n $$ queries to an all‐distances oracle or Õ(n)$$ \overset{\widetilde }{O}(n) $$ queries to a betweenness oracle, and we bound the metric dimension of those graphs by log2n$$ {\log}^2n $$ . Our reconstruction algorithm has a very simple structure, and is highly parallelizable. On general graphs of bounded degree, our reconstruction algorithm has subquadratic query complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信