整数值GARCH(p, q)过程的自举

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
M. Neumann
{"title":"整数值GARCH(p, q)过程的自举","authors":"M. Neumann","doi":"10.1111/stan.12238","DOIUrl":null,"url":null,"abstract":"We consider integer‐valued processes with a linear or nonlinear generalized autoregressive conditional heteroscedastic models structure, where the count variables given the past follow a Poisson distribution. We show that a contraction condition imposed on the intensity function yields a contraction property of the Markov kernel of the process. This allows almost effortless proofs of the existence and uniqueness of a stationary distribution as well as of absolute regularity of the count process. As our main result, we construct a coupling of the original process and a model‐based bootstrap counterpart. Using a contraction property of the Markov kernel of the coupled process we obtain bootstrap consistency for different types of statistics.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"7 1","pages":"343 - 363"},"PeriodicalIF":1.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bootstrap for integer‐valued GARCH(p, q) processes\",\"authors\":\"M. Neumann\",\"doi\":\"10.1111/stan.12238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider integer‐valued processes with a linear or nonlinear generalized autoregressive conditional heteroscedastic models structure, where the count variables given the past follow a Poisson distribution. We show that a contraction condition imposed on the intensity function yields a contraction property of the Markov kernel of the process. This allows almost effortless proofs of the existence and uniqueness of a stationary distribution as well as of absolute regularity of the count process. As our main result, we construct a coupling of the original process and a model‐based bootstrap counterpart. Using a contraction property of the Markov kernel of the coupled process we obtain bootstrap consistency for different types of statistics.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"7 1\",\"pages\":\"343 - 363\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12238\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12238","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑具有线性或非线性广义自回归条件异方差模型结构的整值过程,其中给定过去的计数变量遵循泊松分布。我们证明了施加在强度函数上的收缩条件产生了过程的马尔可夫核的收缩性质。这使得几乎毫不费力地证明一个平稳分布的存在性和唯一性,以及计数过程的绝对规律性。作为我们的主要结果,我们构建了原始过程和基于模型的bootstrap对应物的耦合。利用耦合过程的马尔可夫核的收缩性质,得到了不同类型统计量的自举一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap for integer‐valued GARCH(p, q) processes
We consider integer‐valued processes with a linear or nonlinear generalized autoregressive conditional heteroscedastic models structure, where the count variables given the past follow a Poisson distribution. We show that a contraction condition imposed on the intensity function yields a contraction property of the Markov kernel of the process. This allows almost effortless proofs of the existence and uniqueness of a stationary distribution as well as of absolute regularity of the count process. As our main result, we construct a coupling of the original process and a model‐based bootstrap counterpart. Using a contraction property of the Markov kernel of the coupled process we obtain bootstrap consistency for different types of statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信