结合特定情感词嵌入和加权文本特征的Tweet情感分析

Quanzhi Li, Sameena Shah, Rui Fang, Armineh Nourbakhsh, Xiaomo Liu
{"title":"结合特定情感词嵌入和加权文本特征的Tweet情感分析","authors":"Quanzhi Li, Sameena Shah, Rui Fang, Armineh Nourbakhsh, Xiaomo Liu","doi":"10.1109/WI.2016.0097","DOIUrl":null,"url":null,"abstract":"Previous studies have used many manually identified features and word embeddings for tweet sentiment classification. In this paper, we propose a new approach, which incorporates sentiment-specific word embeddings (SSWE) and a weighted text feature model (WTFM). WTFM produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. Compared to other tweet sentiment feature generation approaches, WTFM is easy to build, simple, yet effective. Experiments show that the proposed approach outperforms the two state-of-the-art tweet sentiment classification methods, SSWE and National Research Council Canada's (NRC) model.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"11 1","pages":"568-571"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Tweet Sentiment Analysis by Incorporating Sentiment-Specific Word Embedding and Weighted Text Features\",\"authors\":\"Quanzhi Li, Sameena Shah, Rui Fang, Armineh Nourbakhsh, Xiaomo Liu\",\"doi\":\"10.1109/WI.2016.0097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have used many manually identified features and word embeddings for tweet sentiment classification. In this paper, we propose a new approach, which incorporates sentiment-specific word embeddings (SSWE) and a weighted text feature model (WTFM). WTFM produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. Compared to other tweet sentiment feature generation approaches, WTFM is easy to build, simple, yet effective. Experiments show that the proposed approach outperforms the two state-of-the-art tweet sentiment classification methods, SSWE and National Research Council Canada's (NRC) model.\",\"PeriodicalId\":6513,\"journal\":{\"name\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"volume\":\"11 1\",\"pages\":\"568-571\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2016.0097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

以前的研究使用了许多人工识别的特征和词嵌入来进行tweet情绪分类。在本文中,我们提出了一种新的方法,该方法结合了情感特定词嵌入(SSWE)和加权文本特征模型(WTFM)。WTFM基于文本否定生成特征。idf加权方案,以及一种Rocchio文本分类方法。与其他tweet情感特征生成方法相比,WTFM易于构建,简单而有效。实验表明,该方法优于两种最先进的推文情感分类方法,SSWE和加拿大国家研究委员会(NRC)模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tweet Sentiment Analysis by Incorporating Sentiment-Specific Word Embedding and Weighted Text Features
Previous studies have used many manually identified features and word embeddings for tweet sentiment classification. In this paper, we propose a new approach, which incorporates sentiment-specific word embeddings (SSWE) and a weighted text feature model (WTFM). WTFM produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. Compared to other tweet sentiment feature generation approaches, WTFM is easy to build, simple, yet effective. Experiments show that the proposed approach outperforms the two state-of-the-art tweet sentiment classification methods, SSWE and National Research Council Canada's (NRC) model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信