求解非线性方程单根的Sharma-Arora最优八阶族方法的一个变体

Dejan Ćebić, Marija Paunović, N. Ralević
{"title":"求解非线性方程单根的Sharma-Arora最优八阶族方法的一个变体","authors":"Dejan Ćebić, Marija Paunović, N. Ralević","doi":"10.1109/SISY.2018.8524857","DOIUrl":null,"url":null,"abstract":"In this paper a new variant of Sharma-Arora's family of optimal eighth-order iterative methods for finding simple root of nonlinear equation is considered. The several members of the new modified family are numerically compared with other relevant three-step methods. The numerical performances based on the test examples agree with the theoretical analysis of the presented family.","PeriodicalId":6647,"journal":{"name":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"30 1","pages":"000081-000086"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Variant of Sharma-Arora's Optimal Eighth-Order Family of Methods for Finding A Simple Root of Nonlinear Equation\",\"authors\":\"Dejan Ćebić, Marija Paunović, N. Ralević\",\"doi\":\"10.1109/SISY.2018.8524857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new variant of Sharma-Arora's family of optimal eighth-order iterative methods for finding simple root of nonlinear equation is considered. The several members of the new modified family are numerically compared with other relevant three-step methods. The numerical performances based on the test examples agree with the theoretical analysis of the presented family.\",\"PeriodicalId\":6647,\"journal\":{\"name\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"volume\":\"30 1\",\"pages\":\"000081-000086\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISY.2018.8524857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 16th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2018.8524857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文考虑了求解非线性方程单根的Sharma-Arora最优八阶迭代方法族的一种新变体。并与其他相关的三步法进行了数值比较。基于测试实例的数值性能与理论分析相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Variant of Sharma-Arora's Optimal Eighth-Order Family of Methods for Finding A Simple Root of Nonlinear Equation
In this paper a new variant of Sharma-Arora's family of optimal eighth-order iterative methods for finding simple root of nonlinear equation is considered. The several members of the new modified family are numerically compared with other relevant three-step methods. The numerical performances based on the test examples agree with the theoretical analysis of the presented family.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信