年龄相关Hawkes过程的稳定性和平均场极限

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Mads Bonde Raad, Susanne Ditlevsen, E. Löcherbach
{"title":"年龄相关Hawkes过程的稳定性和平均场极限","authors":"Mads Bonde Raad, Susanne Ditlevsen, E. Löcherbach","doi":"10.1214/19-aihp1023","DOIUrl":null,"url":null,"abstract":". In the last decade, Hawkes processes have received a lot of attention as good models for functional connectivity in neural spiking networks. In this paper we consider a variant of this process; the age dependent Hawkes process, which incorporates individual post-jump behavior into the framework of the usual Hawkes model. This allows to model recovery properties such as refractory periods, where the effects of the network are momentarily being suppressed or altered. We show how classical stability results for Hawkes processes can be improved by introducing age into the system. In particular, we neither need to a priori bound the intensities nor to impose any conditions on the Lipschitz constants. When the interactions between neurons are of mean-field type, we study large network limits and establish the propagation of chaos property of the system. du réseau est supprimée ou au moins modifiée. Nous améliorons les résultats de stabilité classiques pour les processus de Hawkes dans ce cadre. En particulier, nous n’avons ni besoin de supposer que les intensités sont bornées, ni d’imposer une condition aux normes Lipschitz des fonctions taux de saut. Lorsque les interactions entre les neurones sont du type champ moyen, nous étudions les limites en grande population et nous démontrons la propriété de propagation du chaos du système.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Stability and mean-field limits of age dependent Hawkes processes\",\"authors\":\"Mads Bonde Raad, Susanne Ditlevsen, E. Löcherbach\",\"doi\":\"10.1214/19-aihp1023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In the last decade, Hawkes processes have received a lot of attention as good models for functional connectivity in neural spiking networks. In this paper we consider a variant of this process; the age dependent Hawkes process, which incorporates individual post-jump behavior into the framework of the usual Hawkes model. This allows to model recovery properties such as refractory periods, where the effects of the network are momentarily being suppressed or altered. We show how classical stability results for Hawkes processes can be improved by introducing age into the system. In particular, we neither need to a priori bound the intensities nor to impose any conditions on the Lipschitz constants. When the interactions between neurons are of mean-field type, we study large network limits and establish the propagation of chaos property of the system. du réseau est supprimée ou au moins modifiée. Nous améliorons les résultats de stabilité classiques pour les processus de Hawkes dans ce cadre. En particulier, nous n’avons ni besoin de supposer que les intensités sont bornées, ni d’imposer une condition aux normes Lipschitz des fonctions taux de saut. Lorsque les interactions entre les neurones sont du type champ moyen, nous étudions les limites en grande population et nous démontrons la propriété de propagation du chaos du système.\",\"PeriodicalId\":42884,\"journal\":{\"name\":\"Annales de l Institut Henri Poincare D\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales de l Institut Henri Poincare D\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/19-aihp1023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/19-aihp1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 12

摘要

. 在过去的十年中,Hawkes过程作为神经尖峰网络中功能连接的良好模型受到了很多关注。在本文中,我们考虑这个过程的一个变体;年龄依赖的Hawkes过程,它将个体跳后行为纳入通常的Hawkes模型框架。这允许模拟恢复特性,如不应期,其中网络的影响暂时被抑制或改变。我们展示了如何通过在系统中引入年龄来改善霍克斯过程的经典稳定性结果。特别是,我们既不需要先验地限定强度也不需要对利普希茨常数施加任何条件。当神经元间的相互作用为平均场型时,研究了大网络极限,建立了系统的混沌传播特性。你可以用你的调制调制器调制你的调制调制器。我们的前程是一帆风顺的,我们的前程是一帆风顺的,我们的前程是一帆风顺的。特别地,在假定的情况下,没有一个条件是不符合标准的,也没有一个条件是不符合标准的。神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用,神经细胞间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and mean-field limits of age dependent Hawkes processes
. In the last decade, Hawkes processes have received a lot of attention as good models for functional connectivity in neural spiking networks. In this paper we consider a variant of this process; the age dependent Hawkes process, which incorporates individual post-jump behavior into the framework of the usual Hawkes model. This allows to model recovery properties such as refractory periods, where the effects of the network are momentarily being suppressed or altered. We show how classical stability results for Hawkes processes can be improved by introducing age into the system. In particular, we neither need to a priori bound the intensities nor to impose any conditions on the Lipschitz constants. When the interactions between neurons are of mean-field type, we study large network limits and establish the propagation of chaos property of the system. du réseau est supprimée ou au moins modifiée. Nous améliorons les résultats de stabilité classiques pour les processus de Hawkes dans ce cadre. En particulier, nous n’avons ni besoin de supposer que les intensités sont bornées, ni d’imposer une condition aux normes Lipschitz des fonctions taux de saut. Lorsque les interactions entre les neurones sont du type champ moyen, nous étudions les limites en grande population et nous démontrons la propriété de propagation du chaos du système.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信