{"title":"fpga低功耗应用的动态时钟管理","authors":"I. Brynjolfson, Z. Zilic","doi":"10.1109/CICC.2000.852635","DOIUrl":null,"url":null,"abstract":"Low power techniques employing dynamically controlled clock rates offer potentially powerful energy saving capabilities. In this paper, we consider the application of this low power technique to FPGAs, where we reduce energy waste in clock distributions. We show that current FPGA clock managers are inadequate for use in dynamically controlled systems. We provide an architectural block, the dynamic clock divider, that can be added either internally to clock managers or as user logic, to allow dynamic clock management.","PeriodicalId":20702,"journal":{"name":"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)","volume":"15 1","pages":"139-142"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Dynamic clock management for low power applications in FPGAs\",\"authors\":\"I. Brynjolfson, Z. Zilic\",\"doi\":\"10.1109/CICC.2000.852635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low power techniques employing dynamically controlled clock rates offer potentially powerful energy saving capabilities. In this paper, we consider the application of this low power technique to FPGAs, where we reduce energy waste in clock distributions. We show that current FPGA clock managers are inadequate for use in dynamically controlled systems. We provide an architectural block, the dynamic clock divider, that can be added either internally to clock managers or as user logic, to allow dynamic clock management.\",\"PeriodicalId\":20702,\"journal\":{\"name\":\"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)\",\"volume\":\"15 1\",\"pages\":\"139-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC.2000.852635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC.2000.852635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic clock management for low power applications in FPGAs
Low power techniques employing dynamically controlled clock rates offer potentially powerful energy saving capabilities. In this paper, we consider the application of this low power technique to FPGAs, where we reduce energy waste in clock distributions. We show that current FPGA clock managers are inadequate for use in dynamically controlled systems. We provide an architectural block, the dynamic clock divider, that can be added either internally to clock managers or as user logic, to allow dynamic clock management.