F. Villanueva, M. Ródenas, A. Ruus, J. Saffell, M. Gabriel
{"title":"室内空气中无机空气污染物取样分析技术","authors":"F. Villanueva, M. Ródenas, A. Ruus, J. Saffell, M. Gabriel","doi":"10.1080/05704928.2021.2020807","DOIUrl":null,"url":null,"abstract":"Abstract Effective evidence-based actions to reduce indoor air pollution must be derived from data obtained using accurate means for assessment of the critical air pollutants and for the identification of their sources. This is of paramount importance to provide robust evidence for establishing effective policies or preventive measures. Nevertheless, designing a reliable sampling plan for assessing concentration of inorganic pollutant in the indoor air requires expertise in conducting rigorous sampling campaigns and proper knowledge on the existing standards and methodologies for assessing concentration of the target substances. Therefore, this review focuses on the relevant information and recommendations that should be considered when designing a sampling plan to collect complementary data on the indoor environment under study, to properly define the criteria for establishing the details for the work and to ensure the quality of the assessments. In particular, comprehensive information on the most commonly used methodologies for the determination of a list of critical inorganic pollutants for indoor air quality monitoring has been compiled. Thus, inorganic gaseous pollutants such as CO2, CO, O3, NO2, NO, NH3, SO2, H2O2, H2S, HNO3 and HNCO are included in the present review.","PeriodicalId":8100,"journal":{"name":"Applied Spectroscopy Reviews","volume":"55 1","pages":"531 - 579"},"PeriodicalIF":5.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sampling and analysis techniques for inorganic air pollutants in indoor air\",\"authors\":\"F. Villanueva, M. Ródenas, A. Ruus, J. Saffell, M. Gabriel\",\"doi\":\"10.1080/05704928.2021.2020807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Effective evidence-based actions to reduce indoor air pollution must be derived from data obtained using accurate means for assessment of the critical air pollutants and for the identification of their sources. This is of paramount importance to provide robust evidence for establishing effective policies or preventive measures. Nevertheless, designing a reliable sampling plan for assessing concentration of inorganic pollutant in the indoor air requires expertise in conducting rigorous sampling campaigns and proper knowledge on the existing standards and methodologies for assessing concentration of the target substances. Therefore, this review focuses on the relevant information and recommendations that should be considered when designing a sampling plan to collect complementary data on the indoor environment under study, to properly define the criteria for establishing the details for the work and to ensure the quality of the assessments. In particular, comprehensive information on the most commonly used methodologies for the determination of a list of critical inorganic pollutants for indoor air quality monitoring has been compiled. Thus, inorganic gaseous pollutants such as CO2, CO, O3, NO2, NO, NH3, SO2, H2O2, H2S, HNO3 and HNCO are included in the present review.\",\"PeriodicalId\":8100,\"journal\":{\"name\":\"Applied Spectroscopy Reviews\",\"volume\":\"55 1\",\"pages\":\"531 - 579\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Spectroscopy Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/05704928.2021.2020807\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/05704928.2021.2020807","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Sampling and analysis techniques for inorganic air pollutants in indoor air
Abstract Effective evidence-based actions to reduce indoor air pollution must be derived from data obtained using accurate means for assessment of the critical air pollutants and for the identification of their sources. This is of paramount importance to provide robust evidence for establishing effective policies or preventive measures. Nevertheless, designing a reliable sampling plan for assessing concentration of inorganic pollutant in the indoor air requires expertise in conducting rigorous sampling campaigns and proper knowledge on the existing standards and methodologies for assessing concentration of the target substances. Therefore, this review focuses on the relevant information and recommendations that should be considered when designing a sampling plan to collect complementary data on the indoor environment under study, to properly define the criteria for establishing the details for the work and to ensure the quality of the assessments. In particular, comprehensive information on the most commonly used methodologies for the determination of a list of critical inorganic pollutants for indoor air quality monitoring has been compiled. Thus, inorganic gaseous pollutants such as CO2, CO, O3, NO2, NO, NH3, SO2, H2O2, H2S, HNO3 and HNCO are included in the present review.
期刊介绍:
Applied Spectroscopy Reviews provides the latest information on the principles, methods, and applications of all the diverse branches of spectroscopy, from X-ray, infrared, Raman, atomic absorption, and ESR to microwave, mass, NQR, NMR, and ICP. This international, single-source journal presents discussions that relate physical concepts to chemical applications for chemists, physicists, and other scientists using spectroscopic techniques.