{"title":"数独-量子变体的流行游戏","authors":"I. Nechita, Jordi Pillet","doi":"10.26421/QIC21.9-10-4","DOIUrl":null,"url":null,"abstract":"We introduce SudoQ, a quantum version of the classical game Sudoku. Allowing the entries of the grid to be (non-commutative) projections instead of integers, the solution set of SudoQ puzzles can be much larger than in the classical (commutative) setting. We introduce and analyze a randomized algorithm for computing solutions of SudoQ puzzles. Finally, we state two important conjectures relating the quantum and the classical solutions of SudoQ puzzles, corroborated by analytical and numerical evidence.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"55 1","pages":"781-799"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SudoQ - a quantum variant of the popular game\",\"authors\":\"I. Nechita, Jordi Pillet\",\"doi\":\"10.26421/QIC21.9-10-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce SudoQ, a quantum version of the classical game Sudoku. Allowing the entries of the grid to be (non-commutative) projections instead of integers, the solution set of SudoQ puzzles can be much larger than in the classical (commutative) setting. We introduce and analyze a randomized algorithm for computing solutions of SudoQ puzzles. Finally, we state two important conjectures relating the quantum and the classical solutions of SudoQ puzzles, corroborated by analytical and numerical evidence.\",\"PeriodicalId\":20904,\"journal\":{\"name\":\"Quantum Inf. Comput.\",\"volume\":\"55 1\",\"pages\":\"781-799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26421/QIC21.9-10-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/QIC21.9-10-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce SudoQ, a quantum version of the classical game Sudoku. Allowing the entries of the grid to be (non-commutative) projections instead of integers, the solution set of SudoQ puzzles can be much larger than in the classical (commutative) setting. We introduce and analyze a randomized algorithm for computing solutions of SudoQ puzzles. Finally, we state two important conjectures relating the quantum and the classical solutions of SudoQ puzzles, corroborated by analytical and numerical evidence.