{"title":"拜占庭式电阻桥的精确建模与故障仿真","authors":"H. Cheung, S. Gupta","doi":"10.1109/ICCD.2007.4601923","DOIUrl":null,"url":null,"abstract":"Many recent studies show that a resistive bridging fault may cause intermediate voltages at the bridging fault site. Since the gates in the fanout of the fault site may have distinct and multiple logic threshold voltages, namely VIL and VIH, these gates may interpret the intermediate voltage as logic '1', logic '0', or logically indeterminate. Such fault behavior is described as the bridging fault Byzantine general problem (T. Nanya et al., Nov. 1989). None of the existing models of bridging faults used by bridging fault simulators accurately captures the indeterminate logic behavior of such bridges. We present a resistive bridging fault model that accurately yet efficiently captures indeterminate logic values. We also describe an efficient PPSFP bridging fault simulator and show that all previous approaches seriously overestimate bridging fault coverage.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"PP 1","pages":"347-353"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Accurate modeling and fault simulation of Byzantine resistive bridges\",\"authors\":\"H. Cheung, S. Gupta\",\"doi\":\"10.1109/ICCD.2007.4601923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recent studies show that a resistive bridging fault may cause intermediate voltages at the bridging fault site. Since the gates in the fanout of the fault site may have distinct and multiple logic threshold voltages, namely VIL and VIH, these gates may interpret the intermediate voltage as logic '1', logic '0', or logically indeterminate. Such fault behavior is described as the bridging fault Byzantine general problem (T. Nanya et al., Nov. 1989). None of the existing models of bridging faults used by bridging fault simulators accurately captures the indeterminate logic behavior of such bridges. We present a resistive bridging fault model that accurately yet efficiently captures indeterminate logic values. We also describe an efficient PPSFP bridging fault simulator and show that all previous approaches seriously overestimate bridging fault coverage.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"PP 1\",\"pages\":\"347-353\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
近年来的许多研究表明,阻性桥接故障可能在桥接故障点产生中间电压。由于故障点的扇出门可能具有不同的多个逻辑阈值电压,即VIL和VIH,因此这些门可能将中间电压解释为逻辑“1”、逻辑“0”或逻辑不确定。这种故障行为被描述为桥接故障拜占庭一般问题(T. Nanya et al., Nov. 1989)。桥接故障模拟器所使用的现有桥接故障模型都不能准确地捕捉此类桥的不确定逻辑行为。我们提出了一种准确而有效地捕获不确定逻辑值的电阻桥接故障模型。我们还描述了一个高效的PPSFP桥接故障模拟器,并表明所有以前的方法都严重高估了桥接故障覆盖率。
Accurate modeling and fault simulation of Byzantine resistive bridges
Many recent studies show that a resistive bridging fault may cause intermediate voltages at the bridging fault site. Since the gates in the fanout of the fault site may have distinct and multiple logic threshold voltages, namely VIL and VIH, these gates may interpret the intermediate voltage as logic '1', logic '0', or logically indeterminate. Such fault behavior is described as the bridging fault Byzantine general problem (T. Nanya et al., Nov. 1989). None of the existing models of bridging faults used by bridging fault simulators accurately captures the indeterminate logic behavior of such bridges. We present a resistive bridging fault model that accurately yet efficiently captures indeterminate logic values. We also describe an efficient PPSFP bridging fault simulator and show that all previous approaches seriously overestimate bridging fault coverage.