1.25Cr-0.5Mo主蒸汽管长期使用后的组织与拉伸性能

Bingxiu Yang, Wenchun Jiang, Wenjuan Sun, Yan-ling Zhao, Weiya Zhang
{"title":"1.25Cr-0.5Mo主蒸汽管长期使用后的组织与拉伸性能","authors":"Bingxiu Yang, Wenchun Jiang, Wenjuan Sun, Yan-ling Zhao, Weiya Zhang","doi":"10.1115/PVP2018-84185","DOIUrl":null,"url":null,"abstract":"Metallographic tests, micro-hardness tests and tensile tests were conducted for a 1.25Cr-0.5Mo main steam pipe weldment served for more than 26 years. The results were compared with those for virgin material. Microstructural evolution of 1.25Cr-0.5Mo base metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates take place after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM > HAZ > BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM. Brittle failures can happen more easily for HAZ due to its high yield ratio.","PeriodicalId":23651,"journal":{"name":"Volume 6B: Materials and Fabrication","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microstructure and Tensile Properties of a 1.25Cr-0.5Mo Main Steam Pipe After Long-Term Service\",\"authors\":\"Bingxiu Yang, Wenchun Jiang, Wenjuan Sun, Yan-ling Zhao, Weiya Zhang\",\"doi\":\"10.1115/PVP2018-84185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallographic tests, micro-hardness tests and tensile tests were conducted for a 1.25Cr-0.5Mo main steam pipe weldment served for more than 26 years. The results were compared with those for virgin material. Microstructural evolution of 1.25Cr-0.5Mo base metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates take place after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM > HAZ > BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM. Brittle failures can happen more easily for HAZ due to its high yield ratio.\",\"PeriodicalId\":23651,\"journal\":{\"name\":\"Volume 6B: Materials and Fabrication\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 6B: Materials and Fabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/PVP2018-84185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6B: Materials and Fabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/PVP2018-84185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对服役26年以上的1.25Cr-0.5Mo主蒸汽管焊件进行了金相试验、显微硬度试验和拉伸试验。并与未加工材料进行了比较。研究了1.25Cr-0.5Mo母材的显微组织演变。显微硬度和拉伸性能的退化也进行了研究。此外,利用微缩试样对退役焊件中各亚区拉伸性能进行了表征。结果表明:长期使用后,合金发生了碳化物粗化、片间间距增大、晶界析出等明显的组织变化。显微硬度退化不明显。然而,长期使用对拉伸变形行为、极限抗拉强度和屈服应力的影响是显著的。从微观试样的屈服应力来看,不同亚区顺序为:WM > HAZ > BM,这与显微硬度不同亚区顺序一致。然而,热影响区(HAZ)的极限抗拉强度和断裂应变均低于BM。热影响区由于其高屈服比,更容易发生脆性破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructure and Tensile Properties of a 1.25Cr-0.5Mo Main Steam Pipe After Long-Term Service
Metallographic tests, micro-hardness tests and tensile tests were conducted for a 1.25Cr-0.5Mo main steam pipe weldment served for more than 26 years. The results were compared with those for virgin material. Microstructural evolution of 1.25Cr-0.5Mo base metal was investigated. Degradation in micro-hardness and tensile properties were also studied. In addition, the tensile properties of subzones in the ex-service weldment were characterized by using miniature specimens. The results show that obvious microstructural changes including carbide coarsening, increasing inter lamella spacing and grain boundary precipitates take place after long-term service. Degradation in micro-hardness is not obvious. However, the effects of long term service on tensile deformation behavior, ultimate tensile strength and yield stress are remarkable. Based on the yield stress of micro-specimens, the order of different subzones is: WM > HAZ > BM, which is consistent with the order of different subzones based on micro-hardness. However, the ultimate tensile strength and fracture strain of HAZ are lower than BM. Brittle failures can happen more easily for HAZ due to its high yield ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信