基于主动学习的人体姿态估计

Buyu Liu, V. Ferrari
{"title":"基于主动学习的人体姿态估计","authors":"Buyu Liu, V. Ferrari","doi":"10.1109/ICCV.2017.468","DOIUrl":null,"url":null,"abstract":"Annotating human poses in realistic scenes is very time consuming, yet necessary for training human pose estimators. We propose to address this problem in an active learning framework, which alternates between requesting the most useful annotations among a large set of unlabelled images, and re-training the pose estimator. To this end, (1) we propose an uncertainty estimator specific for body joint predictions, which takes into account the spatial distribution of the responses of the current pose estimator on the unlabelled images; (2) we propose a dynamic combination of influence and uncertainty cues, where their weights vary during the active learning process according to the reliability of the current pose estimator; (3) we introduce a computer assisted annotation interface, which reduces the time necessary for a human annotator to click on a joint by discretizing the image into regions generated by the current pose estimator. Experiments using the MPII and LSP datasets with both simulated and real annotators show that (1) the proposed active selection scheme outperforms several baselines; (2) our computer-assisted interface can further reduce annotation effort; and (3) our technique can further improve the performance of a pose estimator even when starting from an already strong one.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"28 1","pages":"4373-4382"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Active Learning for Human Pose Estimation\",\"authors\":\"Buyu Liu, V. Ferrari\",\"doi\":\"10.1109/ICCV.2017.468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Annotating human poses in realistic scenes is very time consuming, yet necessary for training human pose estimators. We propose to address this problem in an active learning framework, which alternates between requesting the most useful annotations among a large set of unlabelled images, and re-training the pose estimator. To this end, (1) we propose an uncertainty estimator specific for body joint predictions, which takes into account the spatial distribution of the responses of the current pose estimator on the unlabelled images; (2) we propose a dynamic combination of influence and uncertainty cues, where their weights vary during the active learning process according to the reliability of the current pose estimator; (3) we introduce a computer assisted annotation interface, which reduces the time necessary for a human annotator to click on a joint by discretizing the image into regions generated by the current pose estimator. Experiments using the MPII and LSP datasets with both simulated and real annotators show that (1) the proposed active selection scheme outperforms several baselines; (2) our computer-assisted interface can further reduce annotation effort; and (3) our technique can further improve the performance of a pose estimator even when starting from an already strong one.\",\"PeriodicalId\":6559,\"journal\":{\"name\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"28 1\",\"pages\":\"4373-4382\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2017.468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

在真实场景中标注人体姿势非常耗时,但对于训练人体姿势估计器是必要的。我们建议在主动学习框架中解决这个问题,该框架在请求大量未标记图像中最有用的注释和重新训练姿态估计器之间交替进行。为此,(1)我们提出了一种针对身体关节预测的不确定性估计器,该估计器考虑了当前姿态估计器在未标记图像上响应的空间分布;(2)我们提出了影响和不确定性线索的动态组合,其中它们的权重在主动学习过程中根据当前姿态估计器的可靠性而变化;(3)引入了一种计算机辅助标注界面,通过将图像离散到当前姿态估计器生成的区域,减少了人类标注者点击关节所需的时间。在MPII和LSP数据集上使用模拟和真实标注器进行的实验表明:(1)主动选择方案优于多个基线;(2)我们的计算机辅助界面可以进一步减少标注工作量;(3)我们的技术可以进一步提高姿态估计器的性能,即使从一个已经很强的姿态估计器开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active Learning for Human Pose Estimation
Annotating human poses in realistic scenes is very time consuming, yet necessary for training human pose estimators. We propose to address this problem in an active learning framework, which alternates between requesting the most useful annotations among a large set of unlabelled images, and re-training the pose estimator. To this end, (1) we propose an uncertainty estimator specific for body joint predictions, which takes into account the spatial distribution of the responses of the current pose estimator on the unlabelled images; (2) we propose a dynamic combination of influence and uncertainty cues, where their weights vary during the active learning process according to the reliability of the current pose estimator; (3) we introduce a computer assisted annotation interface, which reduces the time necessary for a human annotator to click on a joint by discretizing the image into regions generated by the current pose estimator. Experiments using the MPII and LSP datasets with both simulated and real annotators show that (1) the proposed active selection scheme outperforms several baselines; (2) our computer-assisted interface can further reduce annotation effort; and (3) our technique can further improve the performance of a pose estimator even when starting from an already strong one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信