自然数上仿射半群的右Toeplitz代数的边界商

Q4 Mathematics
Astrid an Huef, Marcelo Laca, I. Raeburn
{"title":"自然数上仿射半群的右Toeplitz代数的边界商","authors":"Astrid an Huef, Marcelo Laca, I. Raeburn","doi":"10.53733/90","DOIUrl":null,"url":null,"abstract":"We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\\mathbb N \\rtimes \\mathbb N^\\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\\mathbb Q_+^\\times}\\!\\! \\ltimes \\mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers\",\"authors\":\"Astrid an Huef, Marcelo Laca, I. Raeburn\",\"doi\":\"10.53733/90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\\\\mathbb N \\\\rtimes \\\\mathbb N^\\\\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\\\\mathbb Q_+^\\\\times}\\\\!\\\\! \\\\ltimes \\\\mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.\",\"PeriodicalId\":30137,\"journal\":{\"name\":\"New Zealand Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Zealand Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53733/90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了由半群${\mathbb N \rtimes \mathbb N^\times}$的右正则表示生成的Toeplitz $C^*$-代数,我们称之为右Toeplitz代数。我们通过研究三个不同的商来分析它的结构。利用乘法有理数的作用,证明了乘法边界商同构于加法有理数的Toeplitz代数的叉积,并研究了其理想结构。Crisp—Laca边界商同构于群${\mathbb Q_+^\times}的$C^*$-代数。\l * \mathbb Q$。右Toeplitz代数及其所有KMS状态因子通过加性边界商存在自然动力学。我们描述了逆温度大于1时的KMS单纯形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers
We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信