原位封盖对相变存储器件性能的影响:AEPM:先进设备工艺和材料

Kevin Brew, R. Conti, I. Saraf, Cheng-Wei Cheng, Cheng-Wei Cheng, William Lee, Yin Xu, N. Saulnier, T. Masuda, T. Jimbo
{"title":"原位封盖对相变存储器件性能的影响:AEPM:先进设备工艺和材料","authors":"Kevin Brew, R. Conti, I. Saraf, Cheng-Wei Cheng, Cheng-Wei Cheng, William Lee, Yin Xu, N. Saulnier, T. Masuda, T. Jimbo","doi":"10.1109/ASMC49169.2020.9185322","DOIUrl":null,"url":null,"abstract":"Oxidation of phase-change memory (PCM) materials (e.g. $Ge_{2}Sb_{2}Te_{5}$, GST) has been shown to decrease crystallization temperature and impact film composition, thus impacting analog switching behavior [1], [2]. PCM mushroom-cell devices were engineered on a 14 nm backend test vehicle to compare the electrical switching performance of in-situ and ex-situ capped GST 225. To mitigate the electrical effects from varying top electrode processes between tools, in-situ devices were fabricated with a Ti-TiN cap on GST before exposure to air. The in-situ cap is reduced to a minimal thickness to prevent oxidation of the Ti adhesion layer and the remainder of TiN was deposited matching to the ex-situ top electrode process. TEM of in-situ capped samples were found to have less GST undercut from patterning and have less reduction of the contact area between the GST and top electrode. SET and RESET programming of in-situ capped PCM devices show comparable SET and RESET state resistances to ex-situ processed PCM devices. Current-voltage measurements show that the in-situ PCM can have slightly lower voltage threshold switching but achieves a significantly higher current after threshold switching. The increased current for in-situ capped PCM results in higher power consumption with fixed voltage programming.","PeriodicalId":6771,"journal":{"name":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"10 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of In-situ Capping on Phase Change Memory Device Performance : AEPM: Advance Equipment Processes and Materials\",\"authors\":\"Kevin Brew, R. Conti, I. Saraf, Cheng-Wei Cheng, Cheng-Wei Cheng, William Lee, Yin Xu, N. Saulnier, T. Masuda, T. Jimbo\",\"doi\":\"10.1109/ASMC49169.2020.9185322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oxidation of phase-change memory (PCM) materials (e.g. $Ge_{2}Sb_{2}Te_{5}$, GST) has been shown to decrease crystallization temperature and impact film composition, thus impacting analog switching behavior [1], [2]. PCM mushroom-cell devices were engineered on a 14 nm backend test vehicle to compare the electrical switching performance of in-situ and ex-situ capped GST 225. To mitigate the electrical effects from varying top electrode processes between tools, in-situ devices were fabricated with a Ti-TiN cap on GST before exposure to air. The in-situ cap is reduced to a minimal thickness to prevent oxidation of the Ti adhesion layer and the remainder of TiN was deposited matching to the ex-situ top electrode process. TEM of in-situ capped samples were found to have less GST undercut from patterning and have less reduction of the contact area between the GST and top electrode. SET and RESET programming of in-situ capped PCM devices show comparable SET and RESET state resistances to ex-situ processed PCM devices. Current-voltage measurements show that the in-situ PCM can have slightly lower voltage threshold switching but achieves a significantly higher current after threshold switching. The increased current for in-situ capped PCM results in higher power consumption with fixed voltage programming.\",\"PeriodicalId\":6771,\"journal\":{\"name\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"10 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC49169.2020.9185322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC49169.2020.9185322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相变记忆(PCM)材料(例如$Ge_{2}Sb_{2}Te_{5}$, GST)的氧化已被证明可以降低结晶温度和影响薄膜成分,从而影响模拟开关行为[1],[2]。PCM蘑菇细胞器件在14 nm后端测试车上进行设计,以比较原位和非原位封顶的GST 225的电气开关性能。为了减轻不同工具之间顶部电极工艺的电效应,在暴露于空气之前,用Ti-TiN盖在GST上制造原位器件。为了防止钛附着层氧化,将原位盖层厚度减小到最小,剩余的TiN沉积与非原位顶电极工艺相匹配。原位封盖样品的TEM发现,GST在图案上有较少的凹边,GST与顶电极之间的接触面积减少较少。原位封顶PCM器件的SET和RESET编程显示出与非原位加工PCM器件相当的SET和RESET状态电阻。电流-电压测量结果表明,原位PCM具有略低的电压阈值开关,但在阈值开关后可获得明显更高的电流。固定电压编程时,原位封顶PCM电流的增加会导致更高的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of In-situ Capping on Phase Change Memory Device Performance : AEPM: Advance Equipment Processes and Materials
Oxidation of phase-change memory (PCM) materials (e.g. $Ge_{2}Sb_{2}Te_{5}$, GST) has been shown to decrease crystallization temperature and impact film composition, thus impacting analog switching behavior [1], [2]. PCM mushroom-cell devices were engineered on a 14 nm backend test vehicle to compare the electrical switching performance of in-situ and ex-situ capped GST 225. To mitigate the electrical effects from varying top electrode processes between tools, in-situ devices were fabricated with a Ti-TiN cap on GST before exposure to air. The in-situ cap is reduced to a minimal thickness to prevent oxidation of the Ti adhesion layer and the remainder of TiN was deposited matching to the ex-situ top electrode process. TEM of in-situ capped samples were found to have less GST undercut from patterning and have less reduction of the contact area between the GST and top electrode. SET and RESET programming of in-situ capped PCM devices show comparable SET and RESET state resistances to ex-situ processed PCM devices. Current-voltage measurements show that the in-situ PCM can have slightly lower voltage threshold switching but achieves a significantly higher current after threshold switching. The increased current for in-situ capped PCM results in higher power consumption with fixed voltage programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信