Bezier多项式及其应用

Nazrul Islam, M. Islam
{"title":"Bezier多项式及其应用","authors":"Nazrul Islam, M. Islam","doi":"10.3329/dujs.v66i2.54562","DOIUrl":null,"url":null,"abstract":"In this paper, we use the Galerkin technique for solving higher order linear and nonlinear boundary value problems (BVPs). The well-known Bezier polynomials are exploited as basis functions in the technique. To use the Bezier polynomials, we need to satisfy the corresponding homogeneous form of the boundary conditions and modification is thus needed. A rigorous matrix formulation is developed by the Galerkin method for linear and nonlinear systems and solved it using Bezier polynomials. The approximate solutions are compared to the exact solutions through tabular form. All problems are computed using the software MATHEMATICA. \nDhaka Univ. J. Sci. 66(2): 157-162, 2018 (July)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bezier Polynomials with Applications\",\"authors\":\"Nazrul Islam, M. Islam\",\"doi\":\"10.3329/dujs.v66i2.54562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the Galerkin technique for solving higher order linear and nonlinear boundary value problems (BVPs). The well-known Bezier polynomials are exploited as basis functions in the technique. To use the Bezier polynomials, we need to satisfy the corresponding homogeneous form of the boundary conditions and modification is thus needed. A rigorous matrix formulation is developed by the Galerkin method for linear and nonlinear systems and solved it using Bezier polynomials. The approximate solutions are compared to the exact solutions through tabular form. All problems are computed using the software MATHEMATICA. \\nDhaka Univ. J. Sci. 66(2): 157-162, 2018 (July)\",\"PeriodicalId\":11280,\"journal\":{\"name\":\"Dhaka University Journal of Science\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dhaka University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/dujs.v66i2.54562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v66i2.54562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用伽辽金技术求解高阶线性和非线性边值问题。该技术利用了著名的贝塞尔多项式作为基函数。要使用Bezier多项式,需要满足相应齐次形式的边界条件,因此需要进行修改。采用伽辽金法建立了线性和非线性系统的严格矩阵公式,并用贝塞尔多项式进行求解。用表格的形式将近似解与精确解进行了比较。所有的问题都是用MATHEMATICA软件计算出来的。达卡大学学报:自然科学版,66(2):157-162,2018 (7)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bezier Polynomials with Applications
In this paper, we use the Galerkin technique for solving higher order linear and nonlinear boundary value problems (BVPs). The well-known Bezier polynomials are exploited as basis functions in the technique. To use the Bezier polynomials, we need to satisfy the corresponding homogeneous form of the boundary conditions and modification is thus needed. A rigorous matrix formulation is developed by the Galerkin method for linear and nonlinear systems and solved it using Bezier polynomials. The approximate solutions are compared to the exact solutions through tabular form. All problems are computed using the software MATHEMATICA. Dhaka Univ. J. Sci. 66(2): 157-162, 2018 (July)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信