逆二次回归模型的最优实验设计

H. Dette, C. Kiss
{"title":"逆二次回归模型的最优实验设计","authors":"H. Dette, C. Kiss","doi":"10.17877/DE290R-8058","DOIUrl":null,"url":null,"abstract":"In this paper optimal experimental designs for inverse quadratic regression models are determined. We consider two difierent parameterizations of the model and investigate local optimal designs with respect to the c-, D- and E-criteria, which re∞ect various aspects of the precision of the maximum likelihood estimator for the parameters in inverse quadratic regression models. In particular it is demonstrated that for a su‐ciently large design space geometric allocation rules are optimal with respect to many optimality criteria. Moreover, in numerous cases the designs with respect to the difierent criteria are supported at the same points. Finally, the e‐ciencies of difierent optimal designs with respect to various optimality criteria are studied, and the e‐ciency of some commonly used designs are investigated.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimal experimental designs for inverse quadratic regression models\",\"authors\":\"H. Dette, C. Kiss\",\"doi\":\"10.17877/DE290R-8058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper optimal experimental designs for inverse quadratic regression models are determined. We consider two difierent parameterizations of the model and investigate local optimal designs with respect to the c-, D- and E-criteria, which re∞ect various aspects of the precision of the maximum likelihood estimator for the parameters in inverse quadratic regression models. In particular it is demonstrated that for a su‐ciently large design space geometric allocation rules are optimal with respect to many optimality criteria. Moreover, in numerous cases the designs with respect to the difierent criteria are supported at the same points. Finally, the e‐ciencies of difierent optimal designs with respect to various optimality criteria are studied, and the e‐ciency of some commonly used designs are investigated.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-8058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-8058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文确定了逆二次回归模型的最优实验设计。我们考虑了模型的两种不同的参数化,并研究了关于c-, D-和e准则的局部最优设计,这些准则反映了逆二次回归模型中参数的最大似然估计精度的各个方面。特别地,它证明了一个足够大的设计空间几何分配规则是最优的关于许多最优性准则。此外,在许多情况下,不同标准的设计在同一点得到支持。最后,研究了各种优化准则下不同优化设计的效率,并对一些常用设计的效率进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal experimental designs for inverse quadratic regression models
In this paper optimal experimental designs for inverse quadratic regression models are determined. We consider two difierent parameterizations of the model and investigate local optimal designs with respect to the c-, D- and E-criteria, which re∞ect various aspects of the precision of the maximum likelihood estimator for the parameters in inverse quadratic regression models. In particular it is demonstrated that for a su‐ciently large design space geometric allocation rules are optimal with respect to many optimality criteria. Moreover, in numerous cases the designs with respect to the difierent criteria are supported at the same points. Finally, the e‐ciencies of difierent optimal designs with respect to various optimality criteria are studied, and the e‐ciency of some commonly used designs are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信