Zihan Chen, Lianghong Chen, Zhiyuan Zhao, Yue Wang
{"title":"AI Illustrator:基于生成对抗网络的艺术插图生成","authors":"Zihan Chen, Lianghong Chen, Zhiyuan Zhao, Yue Wang","doi":"10.1109/ICIVC50857.2020.9177494","DOIUrl":null,"url":null,"abstract":"In recent years, people's pursuit of art has been on the rise. People want computers to be able to create artistic paintings based on descriptions. In this paper, we proposed a novel project, Painting Creator, which uses deep learning technology to enable the computer to generate artistic illustrations from a short piece of text. Our scheme includes two models, image generation model and style transfer model. In the real image generation model, inspired by the application of stack generative adversarial networks in text to image generation, we proposed an improved model, IStackGAN, to solve the problem of image generation. We added a classifier based on the original model and added image structure loss and feature extraction loss to improve the performance of the generator. The generator network can get additional hidden information from the classification information to produce better pictures. The loss of image structure can force the generator to restore the real image, and the loss of feature extraction can verify whether the generator network has extracted the features of the real image set. For the style transfer model, we improved the generator based on the original cycle generative adversarial networks and used the residual block to improve the stability and performance of the u-net generator. To improve the performance of the generator, we also added the cycle consistent loss with MS-SSIM. The experimental results show that our model is improved significantly based on the original paper, and the generated pictures are more vivid in detail, and pictures after the style transfer are more artistic to watch.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"69 1","pages":"155-159"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"AI Illustrator: Art Illustration Generation Based on Generative Adversarial Network\",\"authors\":\"Zihan Chen, Lianghong Chen, Zhiyuan Zhao, Yue Wang\",\"doi\":\"10.1109/ICIVC50857.2020.9177494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, people's pursuit of art has been on the rise. People want computers to be able to create artistic paintings based on descriptions. In this paper, we proposed a novel project, Painting Creator, which uses deep learning technology to enable the computer to generate artistic illustrations from a short piece of text. Our scheme includes two models, image generation model and style transfer model. In the real image generation model, inspired by the application of stack generative adversarial networks in text to image generation, we proposed an improved model, IStackGAN, to solve the problem of image generation. We added a classifier based on the original model and added image structure loss and feature extraction loss to improve the performance of the generator. The generator network can get additional hidden information from the classification information to produce better pictures. The loss of image structure can force the generator to restore the real image, and the loss of feature extraction can verify whether the generator network has extracted the features of the real image set. For the style transfer model, we improved the generator based on the original cycle generative adversarial networks and used the residual block to improve the stability and performance of the u-net generator. To improve the performance of the generator, we also added the cycle consistent loss with MS-SSIM. The experimental results show that our model is improved significantly based on the original paper, and the generated pictures are more vivid in detail, and pictures after the style transfer are more artistic to watch.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"69 1\",\"pages\":\"155-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AI Illustrator: Art Illustration Generation Based on Generative Adversarial Network
In recent years, people's pursuit of art has been on the rise. People want computers to be able to create artistic paintings based on descriptions. In this paper, we proposed a novel project, Painting Creator, which uses deep learning technology to enable the computer to generate artistic illustrations from a short piece of text. Our scheme includes two models, image generation model and style transfer model. In the real image generation model, inspired by the application of stack generative adversarial networks in text to image generation, we proposed an improved model, IStackGAN, to solve the problem of image generation. We added a classifier based on the original model and added image structure loss and feature extraction loss to improve the performance of the generator. The generator network can get additional hidden information from the classification information to produce better pictures. The loss of image structure can force the generator to restore the real image, and the loss of feature extraction can verify whether the generator network has extracted the features of the real image set. For the style transfer model, we improved the generator based on the original cycle generative adversarial networks and used the residual block to improve the stability and performance of the u-net generator. To improve the performance of the generator, we also added the cycle consistent loss with MS-SSIM. The experimental results show that our model is improved significantly based on the original paper, and the generated pictures are more vivid in detail, and pictures after the style transfer are more artistic to watch.