{"title":"梯度收缩孤子的一种分类","authors":"Lei Ni, N. Wallach","doi":"10.4310/MRL.2008.V15.N5.A9","DOIUrl":null,"url":null,"abstract":"The main purpose of this article is to provide an alternate proof to a result of Perelman on gradient shrinking solitons. In dimension three we also generalize the result by removing the $\\kappa$-non-collapsing assumption. In high dimension this new method allows us to prove a classification result on gradient shrinking solitons with vanishing Weyl curvature tensor, which includes the rotationally symmetric ones.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"On a classification of the gradient shrinking solitons\",\"authors\":\"Lei Ni, N. Wallach\",\"doi\":\"10.4310/MRL.2008.V15.N5.A9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purpose of this article is to provide an alternate proof to a result of Perelman on gradient shrinking solitons. In dimension three we also generalize the result by removing the $\\\\kappa$-non-collapsing assumption. In high dimension this new method allows us to prove a classification result on gradient shrinking solitons with vanishing Weyl curvature tensor, which includes the rotationally symmetric ones.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/MRL.2008.V15.N5.A9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/MRL.2008.V15.N5.A9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a classification of the gradient shrinking solitons
The main purpose of this article is to provide an alternate proof to a result of Perelman on gradient shrinking solitons. In dimension three we also generalize the result by removing the $\kappa$-non-collapsing assumption. In high dimension this new method allows us to prove a classification result on gradient shrinking solitons with vanishing Weyl curvature tensor, which includes the rotationally symmetric ones.