低雷诺数下37棒燃料束阻力特性分析

Yonghua Li, Meijun Li, Yangyang Guo
{"title":"低雷诺数下37棒燃料束阻力特性分析","authors":"Yonghua Li, Meijun Li, Yangyang Guo","doi":"10.1155/2020/8861190","DOIUrl":null,"url":null,"abstract":"During the working period of decay heat removal system, the flow rate of liquid sodium in wire-wrapped fuel assembly is very low, generally . In the present study, both experimental methods and numerical simulation methods are applied. First, water experiment of 37-pin wire-wrapped rod bundle was carried out. Then, the numerical simulation study was carried out, the experimental data and the numerical simulation results were compared and analyzed, and a suitable turbulence model was selected to simulate the liquid sodium medium. Finally, numerical simulations under different boundary conditions were performed. Results indicate that except for the low Reynolds number - turbulence model, other turbulence models have little difference with the experimental results. The results of realizable - turbulence model are the most close to the experimental results. Compared with the friction factor obtained by using water medium and liquid sodium medium, the calculation results of water medium and sodium medium under the same condition are basically consistent, with the deviation within 1%. The reason is that the velocity of water is higher than sodium medium at the same Reynolds number, and the transverse disturbance caused by helical wire is larger.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"16 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of Resistance Characteristics of a 37 Rod Fuel Bundle under Low Reynolds Number\",\"authors\":\"Yonghua Li, Meijun Li, Yangyang Guo\",\"doi\":\"10.1155/2020/8861190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the working period of decay heat removal system, the flow rate of liquid sodium in wire-wrapped fuel assembly is very low, generally . In the present study, both experimental methods and numerical simulation methods are applied. First, water experiment of 37-pin wire-wrapped rod bundle was carried out. Then, the numerical simulation study was carried out, the experimental data and the numerical simulation results were compared and analyzed, and a suitable turbulence model was selected to simulate the liquid sodium medium. Finally, numerical simulations under different boundary conditions were performed. Results indicate that except for the low Reynolds number - turbulence model, other turbulence models have little difference with the experimental results. The results of realizable - turbulence model are the most close to the experimental results. Compared with the friction factor obtained by using water medium and liquid sodium medium, the calculation results of water medium and sodium medium under the same condition are basically consistent, with the deviation within 1%. The reason is that the velocity of water is higher than sodium medium at the same Reynolds number, and the transverse disturbance caused by helical wire is larger.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"16 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/8861190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/8861190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在消热系统工作期间,液钠在线包燃料组件中的流量通常很低。在本研究中,采用了实验方法和数值模拟方法。首先,对37针绕丝杆束进行了水分试验。然后进行数值模拟研究,将实验数据与数值模拟结果进行对比分析,选择合适的湍流模型来模拟液态钠介质。最后进行了不同边界条件下的数值模拟。结果表明,除低雷诺数湍流模型外,其他湍流模型与实验结果差异不大。可实现湍流模型的计算结果与实验结果最接近。与采用水介质和液钠介质得到的摩擦因数相比,相同条件下水介质和钠介质的计算结果基本一致,误差在1%以内。原因是在相同雷诺数下,水介质的速度比钠介质快,螺旋线引起的横向扰动更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Resistance Characteristics of a 37 Rod Fuel Bundle under Low Reynolds Number
During the working period of decay heat removal system, the flow rate of liquid sodium in wire-wrapped fuel assembly is very low, generally . In the present study, both experimental methods and numerical simulation methods are applied. First, water experiment of 37-pin wire-wrapped rod bundle was carried out. Then, the numerical simulation study was carried out, the experimental data and the numerical simulation results were compared and analyzed, and a suitable turbulence model was selected to simulate the liquid sodium medium. Finally, numerical simulations under different boundary conditions were performed. Results indicate that except for the low Reynolds number - turbulence model, other turbulence models have little difference with the experimental results. The results of realizable - turbulence model are the most close to the experimental results. Compared with the friction factor obtained by using water medium and liquid sodium medium, the calculation results of water medium and sodium medium under the same condition are basically consistent, with the deviation within 1%. The reason is that the velocity of water is higher than sodium medium at the same Reynolds number, and the transverse disturbance caused by helical wire is larger.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
13
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信