正态分布和蒙特卡罗分布的最小相对熵推断

Marcello Colasante, A. Meucci
{"title":"正态分布和蒙特卡罗分布的最小相对熵推断","authors":"Marcello Colasante, A. Meucci","doi":"10.2139/ssrn.3479693","DOIUrl":null,"url":null,"abstract":"We represent affine sub-manifolds of exponential family distributions as minimum relative entropy sub-manifolds. With such representation we derive analytical formulas for the inference from partial information on expectations and covariances of multivariate normal distributions; and we improve the numerical implementation via Monte Carlo simulations for the inference from partial information of generalized expectation type.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum Relative Entropy Inference for Normal and Monte Carlo Distributions\",\"authors\":\"Marcello Colasante, A. Meucci\",\"doi\":\"10.2139/ssrn.3479693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We represent affine sub-manifolds of exponential family distributions as minimum relative entropy sub-manifolds. With such representation we derive analytical formulas for the inference from partial information on expectations and covariances of multivariate normal distributions; and we improve the numerical implementation via Monte Carlo simulations for the inference from partial information of generalized expectation type.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3479693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3479693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将指数族分布的仿射子流形表示为最小相对熵子流形。利用这种表示,我们导出了多元正态分布的期望和协方差的部分信息推断的解析公式;并通过蒙特卡罗模拟改进了广义期望型部分信息推理的数值实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimum Relative Entropy Inference for Normal and Monte Carlo Distributions
We represent affine sub-manifolds of exponential family distributions as minimum relative entropy sub-manifolds. With such representation we derive analytical formulas for the inference from partial information on expectations and covariances of multivariate normal distributions; and we improve the numerical implementation via Monte Carlo simulations for the inference from partial information of generalized expectation type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信