SimSLAM 2D:用于测试和基准测试的二维可视化slam方法的仿真框架

Juan Rodriguez, Davinson Castano Cano
{"title":"SimSLAM 2D:用于测试和基准测试的二维可视化slam方法的仿真框架","authors":"Juan Rodriguez, Davinson Castano Cano","doi":"10.1109/ICAR46387.2019.8981626","DOIUrl":null,"url":null,"abstract":"Localization proves still a challenging task in robotics, with Visual-SLAM being a both powerful and popular solution. In Ground-SLAM, a branch of Visual-SLAM that uses groundplane views, there is still a lot to explore but the tools for testing new methods need improvement. In this paper, we present a novel framework for simulating the motion of Visual-SLAM methods over a given groundplane. It can also be used to benchmark different methods on a given dataset. We present the functioning of our system, as well as the requirements for a similar system to work. In order to showcase the capabilities of SimSLAM 2D, we present a test case of different trajectories on a smooth concrete terrain comparing the performance of two methods, StreetMap and ORB-SLAM. We also test StreetMap in localization only mode with the purpose of showing the visualization tools. We thereby show the ease of simulating and testing a Visual-SLAM method on a 2D environment in our framework, which represents a useful tool when developing new Visual-SLAM methods.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"151 1","pages":"141-147"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SimSLAM 2D: A Simulation Framework for Testing and Benchmarking of two-dimensional Visual-SLAM Methods\",\"authors\":\"Juan Rodriguez, Davinson Castano Cano\",\"doi\":\"10.1109/ICAR46387.2019.8981626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization proves still a challenging task in robotics, with Visual-SLAM being a both powerful and popular solution. In Ground-SLAM, a branch of Visual-SLAM that uses groundplane views, there is still a lot to explore but the tools for testing new methods need improvement. In this paper, we present a novel framework for simulating the motion of Visual-SLAM methods over a given groundplane. It can also be used to benchmark different methods on a given dataset. We present the functioning of our system, as well as the requirements for a similar system to work. In order to showcase the capabilities of SimSLAM 2D, we present a test case of different trajectories on a smooth concrete terrain comparing the performance of two methods, StreetMap and ORB-SLAM. We also test StreetMap in localization only mode with the purpose of showing the visualization tools. We thereby show the ease of simulating and testing a Visual-SLAM method on a 2D environment in our framework, which represents a useful tool when developing new Visual-SLAM methods.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"151 1\",\"pages\":\"141-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在机器人领域,本地化仍然是一项具有挑战性的任务,Visual-SLAM是一种既强大又受欢迎的解决方案。Ground-SLAM是Visual-SLAM的一个分支,它使用地平面视图,虽然还有很多东西需要探索,但测试新方法的工具需要改进。在本文中,我们提出了一个新的框架来模拟可视化slam方法在给定地平面上的运动。它还可以用于对给定数据集上的不同方法进行基准测试。我们介绍了我们的系统的功能,以及类似系统工作的要求。为了展示SimSLAM 2D的功能,我们在光滑的混凝土地形上展示了不同轨迹的测试用例,比较了StreetMap和ORB-SLAM两种方法的性能。我们还在仅本地化模式下测试StreetMap,目的是展示可视化工具。因此,我们展示了在我们的框架中在2D环境中模拟和测试可视化slam方法的便利性,这代表了开发新的可视化slam方法时的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SimSLAM 2D: A Simulation Framework for Testing and Benchmarking of two-dimensional Visual-SLAM Methods
Localization proves still a challenging task in robotics, with Visual-SLAM being a both powerful and popular solution. In Ground-SLAM, a branch of Visual-SLAM that uses groundplane views, there is still a lot to explore but the tools for testing new methods need improvement. In this paper, we present a novel framework for simulating the motion of Visual-SLAM methods over a given groundplane. It can also be used to benchmark different methods on a given dataset. We present the functioning of our system, as well as the requirements for a similar system to work. In order to showcase the capabilities of SimSLAM 2D, we present a test case of different trajectories on a smooth concrete terrain comparing the performance of two methods, StreetMap and ORB-SLAM. We also test StreetMap in localization only mode with the purpose of showing the visualization tools. We thereby show the ease of simulating and testing a Visual-SLAM method on a 2D environment in our framework, which represents a useful tool when developing new Visual-SLAM methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信