{"title":"高维统计:相对回归的局部线性估计中的二次误差","authors":"Oussama Bouanani, Mustapha Rachdi, Saâdia Rahmani","doi":"10.21915/bimas.2022206","DOIUrl":null,"url":null,"abstract":"In this paper, we use the mean squared relative error as a loss function to construct a local linear estimator of the regression operator. More precisely, we consider n pairs of independent random variables ( X i , Y i ) for i = 1 , . . . , n that we assume drawn from the pair ( X, Y ), which is valued in ( F , R ), where F is a semi-metric space equipped with the semi-metric d . Under some standard assumptions, we give the convergence rate in mean square of the constructed estimator. The usefulness of the estimator is highlighted through the exact expression involved in the leading terms of the quadratic error. Notice that this method is useful in analyzing data with positive responses, such as life times.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"13 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High dimensional statistics: Quadratic error in the local linear estimation of the relative regression\",\"authors\":\"Oussama Bouanani, Mustapha Rachdi, Saâdia Rahmani\",\"doi\":\"10.21915/bimas.2022206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the mean squared relative error as a loss function to construct a local linear estimator of the regression operator. More precisely, we consider n pairs of independent random variables ( X i , Y i ) for i = 1 , . . . , n that we assume drawn from the pair ( X, Y ), which is valued in ( F , R ), where F is a semi-metric space equipped with the semi-metric d . Under some standard assumptions, we give the convergence rate in mean square of the constructed estimator. The usefulness of the estimator is highlighted through the exact expression involved in the leading terms of the quadratic error. Notice that this method is useful in analyzing data with positive responses, such as life times.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/bimas.2022206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2022206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文用均方相对误差作为损失函数,构造了回归算子的局部线性估计。更准确地说,我们考虑n对独立随机变量(X i, Y i),对于i = 1,…。, n,我们假设从(X, Y)对中得到,它的值在(F, R)中,其中F是一个半度量空间,具有半度量d。在一些标准假设下,给出了构造估计量的均方收敛速率。通过在二次误差的前导项中所涉及的精确表达式,突出了估计器的有用性。请注意,此方法在分析具有积极响应的数据(如生命周期)时非常有用。
High dimensional statistics: Quadratic error in the local linear estimation of the relative regression
In this paper, we use the mean squared relative error as a loss function to construct a local linear estimator of the regression operator. More precisely, we consider n pairs of independent random variables ( X i , Y i ) for i = 1 , . . . , n that we assume drawn from the pair ( X, Y ), which is valued in ( F , R ), where F is a semi-metric space equipped with the semi-metric d . Under some standard assumptions, we give the convergence rate in mean square of the constructed estimator. The usefulness of the estimator is highlighted through the exact expression involved in the leading terms of the quadratic error. Notice that this method is useful in analyzing data with positive responses, such as life times.