J. Hoffman, D. Perkovic, S. Shaffer, L. Veilleux, E. Peral
{"title":"实时数字波束形成扫描sar结构中TR模块的数字校准","authors":"J. Hoffman, D. Perkovic, S. Shaffer, L. Veilleux, E. Peral","doi":"10.1109/AERO.2012.6187084","DOIUrl":null,"url":null,"abstract":"Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable a new architecture, which is the baseline for the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). This new instrument concept requires new methods for calibrating multiple simultaneous channels. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on measured temperatures. This method ignores the effects of element aging and any drifts unrelated to temperature. We are developing new digital calibration of digital beamforming arrays, which helps to reduce development time, risk and cost. Precision calibrated TR modules enable real-time beamforming architectures by accurately tracking modules' characteristics through closed-loop digital calibration, which tracks systematic changes regardless of temperature. The benefit of this effort is that it would enable a new, lightweight radar architecture, with on-board digital beamforming. This provides significantly larger swath coverage than conventional SAR architectures for solid earth and biomass remote sensing, while reducing mission mass and cost.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"30 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Digital calibration of TR modules for real-time digital beamforming SweepSAR architectures\",\"authors\":\"J. Hoffman, D. Perkovic, S. Shaffer, L. Veilleux, E. Peral\",\"doi\":\"10.1109/AERO.2012.6187084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable a new architecture, which is the baseline for the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). This new instrument concept requires new methods for calibrating multiple simultaneous channels. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on measured temperatures. This method ignores the effects of element aging and any drifts unrelated to temperature. We are developing new digital calibration of digital beamforming arrays, which helps to reduce development time, risk and cost. Precision calibrated TR modules enable real-time beamforming architectures by accurately tracking modules' characteristics through closed-loop digital calibration, which tracks systematic changes regardless of temperature. The benefit of this effort is that it would enable a new, lightweight radar architecture, with on-board digital beamforming. This provides significantly larger swath coverage than conventional SAR architectures for solid earth and biomass remote sensing, while reducing mission mass and cost.\",\"PeriodicalId\":6421,\"journal\":{\"name\":\"2012 IEEE Aerospace Conference\",\"volume\":\"30 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2012.6187084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital calibration of TR modules for real-time digital beamforming SweepSAR architectures
Real-time digital beamforming, combined with lightweight, large aperture reflectors, enable a new architecture, which is the baseline for the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI). This new instrument concept requires new methods for calibrating multiple simultaneous channels. The calibration of current state-of-the-art Electronically Steered Arrays typically involves pre-flight TR (Transmit/Receive) module characterization over temperature, and in-flight correction based on measured temperatures. This method ignores the effects of element aging and any drifts unrelated to temperature. We are developing new digital calibration of digital beamforming arrays, which helps to reduce development time, risk and cost. Precision calibrated TR modules enable real-time beamforming architectures by accurately tracking modules' characteristics through closed-loop digital calibration, which tracks systematic changes regardless of temperature. The benefit of this effort is that it would enable a new, lightweight radar architecture, with on-board digital beamforming. This provides significantly larger swath coverage than conventional SAR architectures for solid earth and biomass remote sensing, while reducing mission mass and cost.