{"title":"机器学习驱动的可穿戴痴呆症医疗保健:新兴技术和挑战的回顾","authors":"A. Sashima","doi":"10.5220/0010973900003123","DOIUrl":null,"url":null,"abstract":": As personal mobile devices, such as smartphones and smartwatches, are increasingly commoditized, it has become easier to measure individual physiological and physical states and record them continuously. Applying machine learning techniques to the data, we can detect early signs of diseases in older people, such as dementia, and predict probabilities of future disorders. This review paper describes the machine learning technologies in realizing wearable healthcare for older people. First, we survey the literature on machine-learning-driven wearable technologies for the early detection of dementia. Second, we discuss issues of the datasets for constructing ML models. Third, we describe the need for a service framework to collect longitudinal data through continuous monitoring of the user’s health status. Finally, we discuss the socially acceptable implementation of the service framework.","PeriodicalId":20676,"journal":{"name":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","volume":"21 1","pages":"864-871"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-learning-driven Wearable Healthcare for Dementia: A Review of Emerging Technologies and Challenges\",\"authors\":\"A. Sashima\",\"doi\":\"10.5220/0010973900003123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": As personal mobile devices, such as smartphones and smartwatches, are increasingly commoditized, it has become easier to measure individual physiological and physical states and record them continuously. Applying machine learning techniques to the data, we can detect early signs of diseases in older people, such as dementia, and predict probabilities of future disorders. This review paper describes the machine learning technologies in realizing wearable healthcare for older people. First, we survey the literature on machine-learning-driven wearable technologies for the early detection of dementia. Second, we discuss issues of the datasets for constructing ML models. Third, we describe the need for a service framework to collect longitudinal data through continuous monitoring of the user’s health status. Finally, we discuss the socially acceptable implementation of the service framework.\",\"PeriodicalId\":20676,\"journal\":{\"name\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"volume\":\"21 1\",\"pages\":\"864-871\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Health Informatics and Medical Application Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0010973900003123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Health Informatics and Medical Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0010973900003123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine-learning-driven Wearable Healthcare for Dementia: A Review of Emerging Technologies and Challenges
: As personal mobile devices, such as smartphones and smartwatches, are increasingly commoditized, it has become easier to measure individual physiological and physical states and record them continuously. Applying machine learning techniques to the data, we can detect early signs of diseases in older people, such as dementia, and predict probabilities of future disorders. This review paper describes the machine learning technologies in realizing wearable healthcare for older people. First, we survey the literature on machine-learning-driven wearable technologies for the early detection of dementia. Second, we discuss issues of the datasets for constructing ML models. Third, we describe the need for a service framework to collect longitudinal data through continuous monitoring of the user’s health status. Finally, we discuss the socially acceptable implementation of the service framework.