{"title":"使用统计语言模型的时间动作检测","authors":"Alexander Richard, Juergen Gall","doi":"10.1109/CVPR.2016.341","DOIUrl":null,"url":null,"abstract":"While current approaches to action recognition on presegmented video clips already achieve high accuracies, temporal action detection is still far from comparably good results. Automatically locating and classifying the relevant action segments in videos of varying lengths proves to be a challenging task. We propose a novel method for temporal action detection including statistical length and language modeling to represent temporal and contextual structure. Our approach aims at globally optimizing the joint probability of three components, a length and language model and a discriminative action model, without making intermediate decisions. The problem of finding the most likely action sequence and the corresponding segment boundaries in an exponentially large search space is addressed by dynamic programming. We provide an extensive evaluation of each model component on Thumos 14, a large action detection dataset, and report state-of-the-art results on three datasets.","PeriodicalId":6515,"journal":{"name":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"1 1","pages":"3131-3140"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":"{\"title\":\"Temporal Action Detection Using a Statistical Language Model\",\"authors\":\"Alexander Richard, Juergen Gall\",\"doi\":\"10.1109/CVPR.2016.341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While current approaches to action recognition on presegmented video clips already achieve high accuracies, temporal action detection is still far from comparably good results. Automatically locating and classifying the relevant action segments in videos of varying lengths proves to be a challenging task. We propose a novel method for temporal action detection including statistical length and language modeling to represent temporal and contextual structure. Our approach aims at globally optimizing the joint probability of three components, a length and language model and a discriminative action model, without making intermediate decisions. The problem of finding the most likely action sequence and the corresponding segment boundaries in an exponentially large search space is addressed by dynamic programming. We provide an extensive evaluation of each model component on Thumos 14, a large action detection dataset, and report state-of-the-art results on three datasets.\",\"PeriodicalId\":6515,\"journal\":{\"name\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"1 1\",\"pages\":\"3131-3140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"205\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2016.341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2016.341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Action Detection Using a Statistical Language Model
While current approaches to action recognition on presegmented video clips already achieve high accuracies, temporal action detection is still far from comparably good results. Automatically locating and classifying the relevant action segments in videos of varying lengths proves to be a challenging task. We propose a novel method for temporal action detection including statistical length and language modeling to represent temporal and contextual structure. Our approach aims at globally optimizing the joint probability of three components, a length and language model and a discriminative action model, without making intermediate decisions. The problem of finding the most likely action sequence and the corresponding segment boundaries in an exponentially large search space is addressed by dynamic programming. We provide an extensive evaluation of each model component on Thumos 14, a large action detection dataset, and report state-of-the-art results on three datasets.