功率修正林德利分布:性质、经典和贝叶斯估计及回归模型及其应用

IF 0.6 Q4 STATISTICS & PROBABILITY
O. Kharazmi, D. Kumar, S. Dey, St. Anthony’s College
{"title":"功率修正林德利分布:性质、经典和贝叶斯估计及回归模型及其应用","authors":"O. Kharazmi, D. Kumar, S. Dey, St. Anthony’s College","doi":"10.17713/ajs.v52i3.1386","DOIUrl":null,"url":null,"abstract":"In this article, we explore a new probability density function, called the power modified Lindley distribution. Its main feature is to operate a simple trade-off among the generalized exponential, Weibull and gamma distributions, offering an alternative to these three well-established distributions. The proposed model turns out to be quite flexible: its probability density function can be right skewed and its associated hazard rate function may be increasing, decreasing, unimodal and constant. First the model parameters of the proposed distribution are obtained by the maximum likelihood method. Next, Bayes estimators of the unknown parameters are obtained under different loss functions. In addition, bootstrap confidence intervals are provided to compare with Bayes credible intervals. Besides, log power modified Lindley regression model for censored data is proposed. Two real data sets are analyzed to illustrate the flexibility and importance of the proposed model.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"27 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Modified Lindley Distribution: Properties, Classical and Bayesian Estimation and Regression Model with Applications\",\"authors\":\"O. Kharazmi, D. Kumar, S. Dey, St. Anthony’s College\",\"doi\":\"10.17713/ajs.v52i3.1386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we explore a new probability density function, called the power modified Lindley distribution. Its main feature is to operate a simple trade-off among the generalized exponential, Weibull and gamma distributions, offering an alternative to these three well-established distributions. The proposed model turns out to be quite flexible: its probability density function can be right skewed and its associated hazard rate function may be increasing, decreasing, unimodal and constant. First the model parameters of the proposed distribution are obtained by the maximum likelihood method. Next, Bayes estimators of the unknown parameters are obtained under different loss functions. In addition, bootstrap confidence intervals are provided to compare with Bayes credible intervals. Besides, log power modified Lindley regression model for censored data is proposed. Two real data sets are analyzed to illustrate the flexibility and importance of the proposed model.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/ajs.v52i3.1386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i3.1386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探索了一种新的概率密度函数,称为幂修正林德利分布。它的主要特点是在广义指数分布、威布尔分布和伽马分布之间进行简单的权衡,为这三种公认的分布提供了一种选择。该模型具有一定的灵活性,其概率密度函数可以是正偏的,其相关的危险率函数可以是递增的、递减的、单峰的和恒定的。首先用极大似然法得到了所提出分布的模型参数;然后,在不同的损失函数下得到未知参数的贝叶斯估计量。此外,还提供了自举置信区间与贝叶斯可信区间进行比较。此外,提出了对截尾数据进行对数幂修正的Lindley回归模型。通过对两个实际数据集的分析,说明了该模型的灵活性和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power Modified Lindley Distribution: Properties, Classical and Bayesian Estimation and Regression Model with Applications
In this article, we explore a new probability density function, called the power modified Lindley distribution. Its main feature is to operate a simple trade-off among the generalized exponential, Weibull and gamma distributions, offering an alternative to these three well-established distributions. The proposed model turns out to be quite flexible: its probability density function can be right skewed and its associated hazard rate function may be increasing, decreasing, unimodal and constant. First the model parameters of the proposed distribution are obtained by the maximum likelihood method. Next, Bayes estimators of the unknown parameters are obtained under different loss functions. In addition, bootstrap confidence intervals are provided to compare with Bayes credible intervals. Besides, log power modified Lindley regression model for censored data is proposed. Two real data sets are analyzed to illustrate the flexibility and importance of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信