机器学习方法在高光谱图像分类中的应用

M. S. Kumar, V. Keerthi, R.N. Anjnai, M. Sarma, V. Bothale
{"title":"机器学习方法在高光谱图像分类中的应用","authors":"M. S. Kumar, V. Keerthi, R.N. Anjnai, M. Sarma, V. Bothale","doi":"10.1109/InGARSS48198.2020.9358916","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"9 1","pages":"225-228"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evalution of Machine Learning Methods for Hyperspectral Image Classification\",\"authors\":\"M. S. Kumar, V. Keerthi, R.N. Anjnai, M. Sarma, V. Bothale\",\"doi\":\"10.1109/InGARSS48198.2020.9358916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"9 1\",\"pages\":\"225-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习算法是超光谱图像分类的重要预测工具。本文总结了基于机器学习方法的各种星载高光谱图像分类技术。随机森林(RF)、支持向量机(SVM)和深度学习技术卷积神经网络(CNN)在HySIS图像上进行了探索。CNN在高光谱图像分类方面显示出巨大的潜力。与RF、SVM方法相比,2d和3d CNN技术提供了鲁棒的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evalution of Machine Learning Methods for Hyperspectral Image Classification
Machine learning algorithms are outstanding predictive powerful tools for classification of hypserspectral images. In this paper we summarize the various classification techniques based on machine learning approaches for space borne hypserspectral images. Random Forest (RF), Support Vector Machine (SVM) and a deep learning technique, Convolution Neural Network (CNN) are explored on HySIS images. CNN shows great potential to yield high performance in hypserspectral image classification. 2-D and 3-D CNN techniques provided robust classification results when compared to RF, SVM methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信