基于深度强化学习的介质访问控制协议序列设计

C. Adjih, Chung Shue Chen, Chetanveer Sharma Gobin, Iman Hmedoush
{"title":"基于深度强化学习的介质访问控制协议序列设计","authors":"C. Adjih, Chung Shue Chen, Chetanveer Sharma Gobin, Iman Hmedoush","doi":"10.1109/EuCNC/6GSummit58263.2023.10188299","DOIUrl":null,"url":null,"abstract":"This work aims to design protocol sequences through deep reinforcement learning (DRL). Protocol sequences are periodic binary sequences that define multiple access control among users, introduced for systems considering collision channel without feedback (CCw/oFB). In this paper, we leverage the recent advancement of DRL methods to design protocol sequences with desirable new properties, namely Throughput Maximizing User- Irrepressible (TMUI) sequences. TMUI has two specific properties: (i) user-irrepressibility (UI), and (ii) maximizing the minimum individual throughput among the users. We assumed that the transmission channel is divided into time slots and the starting time of each user in joining the system is arbitrary such that there exist random relative time offsets. We use a DRL approach to find TMUI sequences. We report the obtained TMUI protocol sequences and conduct numerical studies comparing TMUI against slotted ALOHA. Simulation results also show that the new medium access control (MAC) protocol does hold the UI property and can achieve substantially higher minimum individual user throughput, under the same system parameters.","PeriodicalId":65870,"journal":{"name":"公共管理高层论坛","volume":"PP 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Medium Access Control Protocol Sequences Through Deep Reinforcement Learning\",\"authors\":\"C. Adjih, Chung Shue Chen, Chetanveer Sharma Gobin, Iman Hmedoush\",\"doi\":\"10.1109/EuCNC/6GSummit58263.2023.10188299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to design protocol sequences through deep reinforcement learning (DRL). Protocol sequences are periodic binary sequences that define multiple access control among users, introduced for systems considering collision channel without feedback (CCw/oFB). In this paper, we leverage the recent advancement of DRL methods to design protocol sequences with desirable new properties, namely Throughput Maximizing User- Irrepressible (TMUI) sequences. TMUI has two specific properties: (i) user-irrepressibility (UI), and (ii) maximizing the minimum individual throughput among the users. We assumed that the transmission channel is divided into time slots and the starting time of each user in joining the system is arbitrary such that there exist random relative time offsets. We use a DRL approach to find TMUI sequences. We report the obtained TMUI protocol sequences and conduct numerical studies comparing TMUI against slotted ALOHA. Simulation results also show that the new medium access control (MAC) protocol does hold the UI property and can achieve substantially higher minimum individual user throughput, under the same system parameters.\",\"PeriodicalId\":65870,\"journal\":{\"name\":\"公共管理高层论坛\",\"volume\":\"PP 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"公共管理高层论坛\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"公共管理高层论坛","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1109/EuCNC/6GSummit58263.2023.10188299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过深度强化学习(DRL)设计协议序列。协议序列是为考虑无反馈冲突信道(CCw/oFB)的系统而引入的定义用户间多重访问控制的周期性二进制序列。在本文中,我们利用DRL方法的最新进展来设计具有理想新特性的协议序列,即吞吐量最大化用户不可抑制(TMUI)序列。TMUI有两个特定的属性:(i)用户不可抑制性(UI)和(ii)最大化用户之间的最小个体吞吐量。我们假设传输信道被划分为时隙,并且每个用户加入系统的起始时间是任意的,因此存在随机的相对时间偏移。我们使用DRL方法来查找TMUI序列。我们报告了获得的TMUI协议序列,并进行了数值研究,比较了TMUI和开槽ALOHA。仿真结果还表明,在相同的系统参数下,新的介质访问控制(MAC)协议确实保持了UI属性,并且可以实现更高的最小单个用户吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing Medium Access Control Protocol Sequences Through Deep Reinforcement Learning
This work aims to design protocol sequences through deep reinforcement learning (DRL). Protocol sequences are periodic binary sequences that define multiple access control among users, introduced for systems considering collision channel without feedback (CCw/oFB). In this paper, we leverage the recent advancement of DRL methods to design protocol sequences with desirable new properties, namely Throughput Maximizing User- Irrepressible (TMUI) sequences. TMUI has two specific properties: (i) user-irrepressibility (UI), and (ii) maximizing the minimum individual throughput among the users. We assumed that the transmission channel is divided into time slots and the starting time of each user in joining the system is arbitrary such that there exist random relative time offsets. We use a DRL approach to find TMUI sequences. We report the obtained TMUI protocol sequences and conduct numerical studies comparing TMUI against slotted ALOHA. Simulation results also show that the new medium access control (MAC) protocol does hold the UI property and can achieve substantially higher minimum individual user throughput, under the same system parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
385
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信