{"title":"利用Gröbner为基础加强延伸自身建设","authors":"Tateaki Sasaki, D. Inaba","doi":"10.1145/3096730.3096737","DOIUrl":null,"url":null,"abstract":"Contrary to that the general Hensel construction (GHC: [3]) uses univariate initial Hensel factors, the extended Hensel construction (EHC: [8]) uses multivariate initial Hensel factors determined by the Newton polygon (see below) of the given multivariate polynomial <i>F (x, <b>u</b>)</i> ∈ K[<i>x</i>, <b><i>u</i></b>], where (<b><i>u</i></b>) = (<i>u</i><sub>1</sub>,...,<i>u</i><i><sub>ℓ</sub></i>), with <i>ℓ</i> ≥ 2, and K is a number field. The <i>F</i>(<i>x, <b>u</b></i>) may be such that its leading coefficient may vanish at (<b><i>u</i></b>) = (<b>0</b>) = (0,...,0), and even may be <i>F</i>(<i>x</i>, <b>0</b>) = 0. The EHC was used so far for computing series expansion of multivariate algebraic function determined by <i>F</i>(<i>x, <b>u</b></i>) = 0, at critical points [8, 5] and for factorization [4, 1] and GCD computation [7] of <i>F</i>(<i>x</i>, <b><i>u</i></b>), without shifting the origin of <b><i>u</i></b>. It allows us to construct efficient algorithms for sparse multivariate polynomials [1, 7]. The EHC is another and promising approach than Zippel's sparse Hensel lifting [9, 10].","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"10 1","pages":"26-28"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing the extended hensel construction by using Gröbner basis\",\"authors\":\"Tateaki Sasaki, D. Inaba\",\"doi\":\"10.1145/3096730.3096737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrary to that the general Hensel construction (GHC: [3]) uses univariate initial Hensel factors, the extended Hensel construction (EHC: [8]) uses multivariate initial Hensel factors determined by the Newton polygon (see below) of the given multivariate polynomial <i>F (x, <b>u</b>)</i> ∈ K[<i>x</i>, <b><i>u</i></b>], where (<b><i>u</i></b>) = (<i>u</i><sub>1</sub>,...,<i>u</i><i><sub>ℓ</sub></i>), with <i>ℓ</i> ≥ 2, and K is a number field. The <i>F</i>(<i>x, <b>u</b></i>) may be such that its leading coefficient may vanish at (<b><i>u</i></b>) = (<b>0</b>) = (0,...,0), and even may be <i>F</i>(<i>x</i>, <b>0</b>) = 0. The EHC was used so far for computing series expansion of multivariate algebraic function determined by <i>F</i>(<i>x, <b>u</b></i>) = 0, at critical points [8, 5] and for factorization [4, 1] and GCD computation [7] of <i>F</i>(<i>x</i>, <b><i>u</i></b>), without shifting the origin of <b><i>u</i></b>. It allows us to construct efficient algorithms for sparse multivariate polynomials [1, 7]. The EHC is another and promising approach than Zippel's sparse Hensel lifting [9, 10].\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"10 1\",\"pages\":\"26-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3096730.3096737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3096730.3096737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing the extended hensel construction by using Gröbner basis
Contrary to that the general Hensel construction (GHC: [3]) uses univariate initial Hensel factors, the extended Hensel construction (EHC: [8]) uses multivariate initial Hensel factors determined by the Newton polygon (see below) of the given multivariate polynomial F (x, u) ∈ K[x, u], where (u) = (u1,...,uℓ), with ℓ ≥ 2, and K is a number field. The F(x, u) may be such that its leading coefficient may vanish at (u) = (0) = (0,...,0), and even may be F(x, 0) = 0. The EHC was used so far for computing series expansion of multivariate algebraic function determined by F(x, u) = 0, at critical points [8, 5] and for factorization [4, 1] and GCD computation [7] of F(x, u), without shifting the origin of u. It allows us to construct efficient algorithms for sparse multivariate polynomials [1, 7]. The EHC is another and promising approach than Zippel's sparse Hensel lifting [9, 10].