跨语言迁移学习技术在小足迹关键词识别中的实证研究

Ming Sun, A. Schwarz, Minhua Wu, N. Strom, S. Matsoukas, S. Vitaladevuni
{"title":"跨语言迁移学习技术在小足迹关键词识别中的实证研究","authors":"Ming Sun, A. Schwarz, Minhua Wu, N. Strom, S. Matsoukas, S. Vitaladevuni","doi":"10.1109/ICMLA.2017.0-150","DOIUrl":null,"url":null,"abstract":"This paper presents our work on building a small-footprint keyword spotting system for a resource-limited language, which requires low CPU, memory and latency. Our keyword spotting system consists of deep neural network (DNN) and hidden Markov model (HMM), which is a hybrid DNN-HMM decoder. We investigate different transfer learning techniques to leverage knowledge and data from a resource-abundant source language to improve the keyword DNN training for a target language which has limited in-domain data. The approaches employed in this paper include training a DNN using source language data to initialize the target language DNN training, mixing data from source and target languages together in a multi-task DNN training setup, using logits computed from a DNN trained on the source language data to regularize the keyword DNN training in the target language, as well as combinations of these techniques. Given different amounts of target language training data, our experimental results show that these transfer learning techniques successfully improve keyword spotting performance for the target language, measured by the area under the curve (AUC) of DNN-HMM decoding detection error tradeoff (DET) curves using a large in-house far-field test set.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"22 1","pages":"255-260"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Empirical Study of Cross-Lingual Transfer Learning Techniques for Small-Footprint Keyword Spotting\",\"authors\":\"Ming Sun, A. Schwarz, Minhua Wu, N. Strom, S. Matsoukas, S. Vitaladevuni\",\"doi\":\"10.1109/ICMLA.2017.0-150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents our work on building a small-footprint keyword spotting system for a resource-limited language, which requires low CPU, memory and latency. Our keyword spotting system consists of deep neural network (DNN) and hidden Markov model (HMM), which is a hybrid DNN-HMM decoder. We investigate different transfer learning techniques to leverage knowledge and data from a resource-abundant source language to improve the keyword DNN training for a target language which has limited in-domain data. The approaches employed in this paper include training a DNN using source language data to initialize the target language DNN training, mixing data from source and target languages together in a multi-task DNN training setup, using logits computed from a DNN trained on the source language data to regularize the keyword DNN training in the target language, as well as combinations of these techniques. Given different amounts of target language training data, our experimental results show that these transfer learning techniques successfully improve keyword spotting performance for the target language, measured by the area under the curve (AUC) of DNN-HMM decoding detection error tradeoff (DET) curves using a large in-house far-field test set.\",\"PeriodicalId\":6636,\"journal\":{\"name\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"22 1\",\"pages\":\"255-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2017.0-150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文介绍了我们为资源有限的语言构建一个小占用的关键字定位系统的工作,该系统需要低CPU,低内存和低延迟。我们的关键词识别系统由深度神经网络(DNN)和隐马尔可夫模型(HMM)组成,隐马尔可夫模型是一种混合的DNN-HMM解码器。我们研究了不同的迁移学习技术,以利用资源丰富的源语言的知识和数据来改进域内数据有限的目标语言的关键字DNN训练。本文采用的方法包括使用源语言数据训练DNN来初始化目标语言DNN训练,在多任务DNN训练设置中将源语言和目标语言的数据混合在一起,使用从源语言数据训练的DNN计算的logits来正则化目标语言中的关键字DNN训练,以及这些技术的组合。给定不同数量的目标语言训练数据,我们的实验结果表明,这些迁移学习技术成功地提高了目标语言的关键字识别性能,通过使用大型内部远场测试集的DNN-HMM解码检测误差权衡(DET)曲线下面积(AUC)来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Study of Cross-Lingual Transfer Learning Techniques for Small-Footprint Keyword Spotting
This paper presents our work on building a small-footprint keyword spotting system for a resource-limited language, which requires low CPU, memory and latency. Our keyword spotting system consists of deep neural network (DNN) and hidden Markov model (HMM), which is a hybrid DNN-HMM decoder. We investigate different transfer learning techniques to leverage knowledge and data from a resource-abundant source language to improve the keyword DNN training for a target language which has limited in-domain data. The approaches employed in this paper include training a DNN using source language data to initialize the target language DNN training, mixing data from source and target languages together in a multi-task DNN training setup, using logits computed from a DNN trained on the source language data to regularize the keyword DNN training in the target language, as well as combinations of these techniques. Given different amounts of target language training data, our experimental results show that these transfer learning techniques successfully improve keyword spotting performance for the target language, measured by the area under the curve (AUC) of DNN-HMM decoding detection error tradeoff (DET) curves using a large in-house far-field test set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信