基于随机元模型的超声检测模拟的有效模型辅助检测概率和灵敏度分析

IF 2 Q2 ENGINEERING, MULTIDISCIPLINARY
Xiaosong Du, Leifur Þ. Leifsson, W. Meeker, P. Gurrala, Jiming Song, R. Roberts
{"title":"基于随机元模型的超声检测模拟的有效模型辅助检测概率和灵敏度分析","authors":"Xiaosong Du, Leifur Þ. Leifsson, W. Meeker, P. Gurrala, Jiming Song, R. Roberts","doi":"10.1115/1.4044446","DOIUrl":null,"url":null,"abstract":"\n Model-assisted probability of detection (MAPOD) and sensitivity analysis (SA) are important for quantifying the inspection capability of nondestructive testing (NDT) systems. To improve the computational efficiency, this work proposes the use of polynomial chaos expansions (PCEs), integrated with least-angle regression (LARS), a basis-adaptive technique, and a hyperbolic truncation scheme, in lieu of the direct use of the physics-based measurement model in the MAPOD and SA calculations. The proposed method is demonstrated on three ultrasonic testing cases and compared with Monte Carlo sampling (MCS) of the physics model, MCS-based kriging, and the ordinary least-squares (OLS)-based PCE method. The results show that the probability of detection (POD) metrics of interests can be controlled within 1% accuracy relative to using the physics model directly. Comparison with metamodels shows that the LARS-based PCE method can provide up to an order of magnitude improvement in the computational efficiency.","PeriodicalId":52294,"journal":{"name":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","volume":"9 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Efficient Model-Assisted Probability of Detection and Sensitivity Analysis for Ultrasonic Testing Simulations Using Stochastic Metamodeling\",\"authors\":\"Xiaosong Du, Leifur Þ. Leifsson, W. Meeker, P. Gurrala, Jiming Song, R. Roberts\",\"doi\":\"10.1115/1.4044446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Model-assisted probability of detection (MAPOD) and sensitivity analysis (SA) are important for quantifying the inspection capability of nondestructive testing (NDT) systems. To improve the computational efficiency, this work proposes the use of polynomial chaos expansions (PCEs), integrated with least-angle regression (LARS), a basis-adaptive technique, and a hyperbolic truncation scheme, in lieu of the direct use of the physics-based measurement model in the MAPOD and SA calculations. The proposed method is demonstrated on three ultrasonic testing cases and compared with Monte Carlo sampling (MCS) of the physics model, MCS-based kriging, and the ordinary least-squares (OLS)-based PCE method. The results show that the probability of detection (POD) metrics of interests can be controlled within 1% accuracy relative to using the physics model directly. Comparison with metamodels shows that the LARS-based PCE method can provide up to an order of magnitude improvement in the computational efficiency.\",\"PeriodicalId\":52294,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4044446\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4044446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 10

摘要

模型辅助检测概率(mapapod)和灵敏度分析(SA)是量化无损检测系统检测能力的重要方法。为了提高计算效率,本工作提出使用多项式混沌展开(PCEs),结合最小角度回归(LARS),基自适应技术和双曲截断方案,代替直接使用基于物理的测量模型在mapapod和SA计算中。在三个超声波检测案例中进行了验证,并与物理模型的蒙特卡罗采样(MCS)、基于MCS的克里格采样(kriging)和基于普通最小二乘(OLS)的PCE方法进行了比较。结果表明,相对于直接使用物理模型,感兴趣指标的检测概率(POD)精度可以控制在1%以内。与元模型的比较表明,基于lars的PCE方法可以将计算效率提高一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Model-Assisted Probability of Detection and Sensitivity Analysis for Ultrasonic Testing Simulations Using Stochastic Metamodeling
Model-assisted probability of detection (MAPOD) and sensitivity analysis (SA) are important for quantifying the inspection capability of nondestructive testing (NDT) systems. To improve the computational efficiency, this work proposes the use of polynomial chaos expansions (PCEs), integrated with least-angle regression (LARS), a basis-adaptive technique, and a hyperbolic truncation scheme, in lieu of the direct use of the physics-based measurement model in the MAPOD and SA calculations. The proposed method is demonstrated on three ultrasonic testing cases and compared with Monte Carlo sampling (MCS) of the physics model, MCS-based kriging, and the ordinary least-squares (OLS)-based PCE method. The results show that the probability of detection (POD) metrics of interests can be controlled within 1% accuracy relative to using the physics model directly. Comparison with metamodels shows that the LARS-based PCE method can provide up to an order of magnitude improvement in the computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
9.10%
发文量
25
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信