非线性规划的自适应惩罚方法

P. Nie
{"title":"非线性规划的自适应惩罚方法","authors":"P. Nie","doi":"10.1155/AMRX.2005.1","DOIUrl":null,"url":null,"abstract":"For penalty approaches, it is extremely difficult to choose penalty parameter and penalty term to avoid ill-conditions. In this work, penalty techniques fornonlinear programming problems are revisited. A new penalty approach, which is called self-adaptive penalty method, is proposed. When penalty parameter and penalty term are considered, we adjust them according to the feedback information at each step (and the previous steps) in the new method so that the second information of the subproblem may be a semidefinite positive matrix whose conditioned number is not too large.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"88 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A self-adaptive penalty approach for nonlinear programming\",\"authors\":\"P. Nie\",\"doi\":\"10.1155/AMRX.2005.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For penalty approaches, it is extremely difficult to choose penalty parameter and penalty term to avoid ill-conditions. In this work, penalty techniques fornonlinear programming problems are revisited. A new penalty approach, which is called self-adaptive penalty method, is proposed. When penalty parameter and penalty term are considered, we adjust them according to the feedback information at each step (and the previous steps) in the new method so that the second information of the subproblem may be a semidefinite positive matrix whose conditioned number is not too large.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"88 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/AMRX.2005.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/AMRX.2005.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于惩罚方法来说,为了避免病态,选择惩罚参数和惩罚期限是非常困难的。在这项工作中,重新审视了非线性规划问题的惩罚技术。提出了一种新的惩罚方法——自适应惩罚法。当考虑惩罚参数和惩罚项时,我们根据新方法中每一步(以及前一步)的反馈信息进行调整,使子问题的第二信息可以是条件数不太大的半定正矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A self-adaptive penalty approach for nonlinear programming
For penalty approaches, it is extremely difficult to choose penalty parameter and penalty term to avoid ill-conditions. In this work, penalty techniques fornonlinear programming problems are revisited. A new penalty approach, which is called self-adaptive penalty method, is proposed. When penalty parameter and penalty term are considered, we adjust them according to the feedback information at each step (and the previous steps) in the new method so that the second information of the subproblem may be a semidefinite positive matrix whose conditioned number is not too large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信