使用扩展的类质心信息提高重复错误报告的检测性能

Phuc Minh Nhan
{"title":"使用扩展的类质心信息提高重复错误报告的检测性能","authors":"Phuc Minh Nhan","doi":"10.35382/18594816.1.26.2017.107","DOIUrl":null,"url":null,"abstract":"In software maintenance, bug reports play an important role in the correctness of  software packages. Unfortunately, the duplicatebug report problem arises because there are too many duplicate bug reports in various software projects. Handling with duplicate bug reports is thus time-consuming and has high cost of software maintenance. Therefore, this research introduces a detection scheme based on the extended class centroid information (ECCI) to enhance thedetection performance. This method is extended from the previous one, which used only centroid method without considering the effects of both inner and inter class. Besides, this method also improved the previous use of normalized cosine in identifying the similarity between two bug reports by denormalized cosine.  The effectiveness of ECCI is proved through the empirical study with three open-source projects: SVN, Argo UML and Apache. The experimental results show thatECCI outperforms other detection schemes by about 10% in all cases.","PeriodicalId":21692,"journal":{"name":"Scientific Journal of Tra Vinh University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPROVING DETECTION PERFORMANCE OF DUPLICATE BUG REPORTS USING EXTENDED CLASS CENTROID INFORMATION\",\"authors\":\"Phuc Minh Nhan\",\"doi\":\"10.35382/18594816.1.26.2017.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In software maintenance, bug reports play an important role in the correctness of  software packages. Unfortunately, the duplicatebug report problem arises because there are too many duplicate bug reports in various software projects. Handling with duplicate bug reports is thus time-consuming and has high cost of software maintenance. Therefore, this research introduces a detection scheme based on the extended class centroid information (ECCI) to enhance thedetection performance. This method is extended from the previous one, which used only centroid method without considering the effects of both inner and inter class. Besides, this method also improved the previous use of normalized cosine in identifying the similarity between two bug reports by denormalized cosine.  The effectiveness of ECCI is proved through the empirical study with three open-source projects: SVN, Argo UML and Apache. The experimental results show thatECCI outperforms other detection schemes by about 10% in all cases.\",\"PeriodicalId\":21692,\"journal\":{\"name\":\"Scientific Journal of Tra Vinh University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Journal of Tra Vinh University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35382/18594816.1.26.2017.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Journal of Tra Vinh University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35382/18594816.1.26.2017.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在软件维护中,bug报告对软件包的正确性起着非常重要的作用。不幸的是,出现重复的bug报告问题是因为在不同的软件项目中有太多重复的bug报告。因此,处理重复的bug报告非常耗时,并且软件维护成本很高。为此,本研究引入了一种基于扩展类质心信息(ECCI)的检测方案来提高检测性能。该方法是在以往只采用质心法而不考虑类内和类间影响的基础上进行扩展的。此外,该方法还改进了以前使用归一化余弦来识别两个bug报告之间的相似性的方法。通过对SVN、Argo UML和Apache三个开源项目的实证研究,证明了ECCI的有效性。实验结果表明,ecci在所有情况下都比其他检测方案高出约10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPROVING DETECTION PERFORMANCE OF DUPLICATE BUG REPORTS USING EXTENDED CLASS CENTROID INFORMATION
In software maintenance, bug reports play an important role in the correctness of  software packages. Unfortunately, the duplicatebug report problem arises because there are too many duplicate bug reports in various software projects. Handling with duplicate bug reports is thus time-consuming and has high cost of software maintenance. Therefore, this research introduces a detection scheme based on the extended class centroid information (ECCI) to enhance thedetection performance. This method is extended from the previous one, which used only centroid method without considering the effects of both inner and inter class. Besides, this method also improved the previous use of normalized cosine in identifying the similarity between two bug reports by denormalized cosine.  The effectiveness of ECCI is proved through the empirical study with three open-source projects: SVN, Argo UML and Apache. The experimental results show thatECCI outperforms other detection schemes by about 10% in all cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信