{"title":"具有显式常数估计的曲面上的非线性Korn不等式","authors":"M. Mălin, C. Mardare","doi":"10.5802/CRMATH.122","DOIUrl":null,"url":null,"abstract":"A nonlinear Korn inequality on a surface estimates a distance between a surface θ(ω) and another surface φ(ω) in terms of distances between their fundamental forms in the space Lp (ω), 1 < p <∞. We establish a new inequality of this type. The novelty is that the immersion θ belongs to a specific set of mappings of class C 1 from ω into R3 with a unit vector field also of class C 1 over ω. Résumé. Une inégalité de Korn non linéaire sur une surface estime une distance entre une surfaceθ(ω) et une autre surfaceφ(ω) en fonction des distances entre leur formes fondamentales dans l’espace Lp (ω), 1 < p <∞. Nous établissons une nouvelle inégalité de ce type. La nouveauté réside dans l’appartenance de l’immersion θ à un ensemble particulier d’applications de classe C 1 de ω dans R3 avec un champ de vecteurs normaux unitaires aussi de classe C 1 dans ω. Funding. The work of the second author was substantially supported by a grant from City University of Hong Kong (Project No. 7005495). Manuscript received 18th September 2020, accepted 23rd September 2020. ∗Corresponding author. ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 106 Maria Malin and Cristinel Mardare 1. Notation and definitions Vector and matrix fields are denoted by boldface letters. Given any open set Ω ⊂ Rn , n > 1, any subset V ⊂ Y of a finite-dimensional vector space Y , and any integer `> 0, the notation C (Ω;V ) designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for all x ∈ Ω and vi ∈ C (Ω). Likewise, given any real number p > 1, the notation Lp (Ω;V ), resp. W `, p (Ω;V ), designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for almost all x ∈Ω and vi ∈ Lp (Ω), resp. vi ∈W `, p (Ω). The space of all real matrices with k rows and ` columns is denotedMk×`. We also let M :=Mk×k ,S := { A ∈Mk ; A = A } , S> := { A ∈Sk ; A is positive-definite } , and O+ := { A ∈Mk ; A A = I and det A = 1 } . A k × ` matrix whose column vectors are the vectors v 1, . . . , v` ∈ Rk is denoted (v 1| . . . |v`). If A ∈S>, there exists a unique matrix U ∈S> such that U 2 = A; this being the case, we let A1/2 :=U . The Euclidean norm in R3 is denoted | · |. Spaces of matrices are equipped with the Frobenius norm, also denoted | · |. The spaces Lp (Ω), Lp (Ω;Rk ), and Lp (Ω;Mk×`), are respectively equipped with the norms denoted and defined by","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"78 1","pages":"105-111"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonlinear Korn inequality on a surface with an explicit estimate of the constant\",\"authors\":\"M. Mălin, C. Mardare\",\"doi\":\"10.5802/CRMATH.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear Korn inequality on a surface estimates a distance between a surface θ(ω) and another surface φ(ω) in terms of distances between their fundamental forms in the space Lp (ω), 1 < p <∞. We establish a new inequality of this type. The novelty is that the immersion θ belongs to a specific set of mappings of class C 1 from ω into R3 with a unit vector field also of class C 1 over ω. Résumé. Une inégalité de Korn non linéaire sur une surface estime une distance entre une surfaceθ(ω) et une autre surfaceφ(ω) en fonction des distances entre leur formes fondamentales dans l’espace Lp (ω), 1 < p <∞. Nous établissons une nouvelle inégalité de ce type. La nouveauté réside dans l’appartenance de l’immersion θ à un ensemble particulier d’applications de classe C 1 de ω dans R3 avec un champ de vecteurs normaux unitaires aussi de classe C 1 dans ω. Funding. The work of the second author was substantially supported by a grant from City University of Hong Kong (Project No. 7005495). Manuscript received 18th September 2020, accepted 23rd September 2020. ∗Corresponding author. ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 106 Maria Malin and Cristinel Mardare 1. Notation and definitions Vector and matrix fields are denoted by boldface letters. Given any open set Ω ⊂ Rn , n > 1, any subset V ⊂ Y of a finite-dimensional vector space Y , and any integer `> 0, the notation C (Ω;V ) designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for all x ∈ Ω and vi ∈ C (Ω). Likewise, given any real number p > 1, the notation Lp (Ω;V ), resp. W `, p (Ω;V ), designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for almost all x ∈Ω and vi ∈ Lp (Ω), resp. vi ∈W `, p (Ω). The space of all real matrices with k rows and ` columns is denotedMk×`. We also let M :=Mk×k ,S := { A ∈Mk ; A = A } , S> := { A ∈Sk ; A is positive-definite } , and O+ := { A ∈Mk ; A A = I and det A = 1 } . A k × ` matrix whose column vectors are the vectors v 1, . . . , v` ∈ Rk is denoted (v 1| . . . |v`). If A ∈S>, there exists a unique matrix U ∈S> such that U 2 = A; this being the case, we let A1/2 :=U . The Euclidean norm in R3 is denoted | · |. Spaces of matrices are equipped with the Frobenius norm, also denoted | · |. The spaces Lp (Ω), Lp (Ω;Rk ), and Lp (Ω;Mk×`), are respectively equipped with the norms denoted and defined by\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"78 1\",\"pages\":\"105-111\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMATH.122\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/CRMATH.122","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
表面上的非线性Korn不等式估计距离表面θ(ω),另一个表面φ(ω)的基本形式的空间之间的距离Lp(ω),1 < p 1,有限维向量空间的任何子集V⊂Y Y,和任何整数> 0,符号C(Ω,V)指定所有字段的集合V = (vi):Ω→Y, V (x)∈对于所有x∈Ω和vi∈C(Ω)。同样地,给定任意实数p > 1,符号Lp (Ω;V), resp。W′,p (Ω;V)表示所有字段V = (vi):Ω→Y的集合,使得对于几乎所有x∈Ω和vi∈Lp (Ω), V (x)∈V。vi∈W ', p (Ω)。所有有k行和k列的实矩阵的空间记为mkx。令M:=Mk×k,S:= {A∈Mk;A = A}, S>:= {A∈Sk;A为正定},且0 +:= {A∈Mk;A A = I det A = 1}。一个k × '矩阵,它的列向量是向量v1,…, v′∈Rk记为(v1 |…| v”)。若A∈S>,则存在唯一矩阵U∈S>使得U 2 = A;在这种情况下,令a /2 =U。R3中的欧几里得范数表示为|·|。矩阵空间具有Frobenius范数,也表示为|·|。在空间Lp (Ω)、Lp (Ω;Rk)和Lp (Ω; mkx ')中,分别配备用表示和定义的规范
A nonlinear Korn inequality on a surface with an explicit estimate of the constant
A nonlinear Korn inequality on a surface estimates a distance between a surface θ(ω) and another surface φ(ω) in terms of distances between their fundamental forms in the space Lp (ω), 1 < p <∞. We establish a new inequality of this type. The novelty is that the immersion θ belongs to a specific set of mappings of class C 1 from ω into R3 with a unit vector field also of class C 1 over ω. Résumé. Une inégalité de Korn non linéaire sur une surface estime une distance entre une surfaceθ(ω) et une autre surfaceφ(ω) en fonction des distances entre leur formes fondamentales dans l’espace Lp (ω), 1 < p <∞. Nous établissons une nouvelle inégalité de ce type. La nouveauté réside dans l’appartenance de l’immersion θ à un ensemble particulier d’applications de classe C 1 de ω dans R3 avec un champ de vecteurs normaux unitaires aussi de classe C 1 dans ω. Funding. The work of the second author was substantially supported by a grant from City University of Hong Kong (Project No. 7005495). Manuscript received 18th September 2020, accepted 23rd September 2020. ∗Corresponding author. ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/ 106 Maria Malin and Cristinel Mardare 1. Notation and definitions Vector and matrix fields are denoted by boldface letters. Given any open set Ω ⊂ Rn , n > 1, any subset V ⊂ Y of a finite-dimensional vector space Y , and any integer `> 0, the notation C (Ω;V ) designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for all x ∈ Ω and vi ∈ C (Ω). Likewise, given any real number p > 1, the notation Lp (Ω;V ), resp. W `, p (Ω;V ), designates the set of all fields v = (vi ) :Ω→ Y such that v (x) ∈ V for almost all x ∈Ω and vi ∈ Lp (Ω), resp. vi ∈W `, p (Ω). The space of all real matrices with k rows and ` columns is denotedMk×`. We also let M :=Mk×k ,S := { A ∈Mk ; A = A } , S> := { A ∈Sk ; A is positive-definite } , and O+ := { A ∈Mk ; A A = I and det A = 1 } . A k × ` matrix whose column vectors are the vectors v 1, . . . , v` ∈ Rk is denoted (v 1| . . . |v`). If A ∈S>, there exists a unique matrix U ∈S> such that U 2 = A; this being the case, we let A1/2 :=U . The Euclidean norm in R3 is denoted | · |. Spaces of matrices are equipped with the Frobenius norm, also denoted | · |. The spaces Lp (Ω), Lp (Ω;Rk ), and Lp (Ω;Mk×`), are respectively equipped with the norms denoted and defined by
期刊介绍:
The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English.
The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.