时间尺度上线性时变系统的状态反馈镇定

John M. Davis, I. Gravagne, Billy Jackson, R. Marks
{"title":"时间尺度上线性时变系统的状态反馈镇定","authors":"John M. Davis, I. Gravagne, Billy Jackson, R. Marks","doi":"10.1109/SSST.2010.5442794","DOIUrl":null,"url":null,"abstract":"A fundamental result in linear system theory is the development of a linear state feedback stabilizer for time-varying systems under suitable controllability constraints. This result was previously restricted to systems operating on the continuous (R) and uniform discrete (hZ) time domains with constant step size h. Using the framework of dynamic equations on time scales, we construct a linear state feedback stabilizer for time-varying systems on arbitrary time domains1.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"9 1","pages":"9-14"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"State feedback stabilization of linear time-varying systems on time scales\",\"authors\":\"John M. Davis, I. Gravagne, Billy Jackson, R. Marks\",\"doi\":\"10.1109/SSST.2010.5442794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental result in linear system theory is the development of a linear state feedback stabilizer for time-varying systems under suitable controllability constraints. This result was previously restricted to systems operating on the continuous (R) and uniform discrete (hZ) time domains with constant step size h. Using the framework of dynamic equations on time scales, we construct a linear state feedback stabilizer for time-varying systems on arbitrary time domains1.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"9 1\",\"pages\":\"9-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

线性系统理论的一个基本成果是在适当的可控性约束下,发展了时变系统的线性状态反馈稳定器。这一结果以前仅限于系统运行在连续(R)和均匀离散(hZ)时域上,且步长为恒定h。利用时间尺度上的动态方程框架,我们构造了任意时域上时变系统的线性状态反馈稳定器s1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State feedback stabilization of linear time-varying systems on time scales
A fundamental result in linear system theory is the development of a linear state feedback stabilizer for time-varying systems under suitable controllability constraints. This result was previously restricted to systems operating on the continuous (R) and uniform discrete (hZ) time domains with constant step size h. Using the framework of dynamic equations on time scales, we construct a linear state feedback stabilizer for time-varying systems on arbitrary time domains1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信