原油加氢脱硫优化操作

Q3 Chemical Engineering
Esin Iplik, I. Aslanidou, K. Kyprianidis
{"title":"原油加氢脱硫优化操作","authors":"Esin Iplik, I. Aslanidou, K. Kyprianidis","doi":"10.3303/CET2186161","DOIUrl":null,"url":null,"abstract":"Crude oil has different characteristics according to its origin, and this difference causes suboptimal operation if not considered. Similar to other refinery operations, hydrodesulfurization suffers from lacking this knowledge. Information on the true boiling point curve of the feed, next to its sulfur concentration, can be used to optimize the operating temperature. In this work, an optimization problem is demonstrated for two manipulated temperatures of the system and solved by using a gradient-based and a gradient-free algorithm. While the gradient based solution has a single objective of minimum sulfur content, the gradient-free solution has three objectives: minimum sulfur, inlet temperature, and secondary hydrogen flow rate. A continuous lumping model is used to predict the temperature and sulfur responses of a real hydrodesulfurization plant. An adaptive approach is preferred for the model to cope with the catalyst deactivation interference on the product sulfur content constraint. The effect of changing feed on optimality is demonstrated by using eight types of feeds with varying true boiling point and sulfur content. In addition to that, the impact of catalyst age is shown on similar feed processed on different dates.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"73 1","pages":"961-966"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crude-specific Optimal Operation of Hydrodesulfurization\",\"authors\":\"Esin Iplik, I. Aslanidou, K. Kyprianidis\",\"doi\":\"10.3303/CET2186161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crude oil has different characteristics according to its origin, and this difference causes suboptimal operation if not considered. Similar to other refinery operations, hydrodesulfurization suffers from lacking this knowledge. Information on the true boiling point curve of the feed, next to its sulfur concentration, can be used to optimize the operating temperature. In this work, an optimization problem is demonstrated for two manipulated temperatures of the system and solved by using a gradient-based and a gradient-free algorithm. While the gradient based solution has a single objective of minimum sulfur content, the gradient-free solution has three objectives: minimum sulfur, inlet temperature, and secondary hydrogen flow rate. A continuous lumping model is used to predict the temperature and sulfur responses of a real hydrodesulfurization plant. An adaptive approach is preferred for the model to cope with the catalyst deactivation interference on the product sulfur content constraint. The effect of changing feed on optimality is demonstrated by using eight types of feeds with varying true boiling point and sulfur content. In addition to that, the impact of catalyst age is shown on similar feed processed on different dates.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"73 1\",\"pages\":\"961-966\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2186161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

不同产地的原油具有不同的特性,如果不考虑这种差异,就会导致作业不理想。与其他炼油厂操作一样,加氢脱硫也缺乏这方面的知识。进料的真实沸点曲线上的信息,紧挨着它的硫浓度,可以用来优化操作温度。在本工作中,演示了系统两种操纵温度下的优化问题,并使用基于梯度和无梯度的算法求解。基于梯度的溶液只有一个最低硫含量的目标,而无梯度溶液有三个目标:最低硫含量、入口温度和二次氢流量。采用连续集总模型对实际加氢脱硫装置的温度和硫响应进行了预测。该模型优选自适应方法来处理催化剂失活对产物硫含量约束的干扰。通过使用8种不同真沸点和硫含量的原料,论证了改变原料对最优性的影响。此外,催化剂年龄对不同日期加工的同类饲料的影响也有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crude-specific Optimal Operation of Hydrodesulfurization
Crude oil has different characteristics according to its origin, and this difference causes suboptimal operation if not considered. Similar to other refinery operations, hydrodesulfurization suffers from lacking this knowledge. Information on the true boiling point curve of the feed, next to its sulfur concentration, can be used to optimize the operating temperature. In this work, an optimization problem is demonstrated for two manipulated temperatures of the system and solved by using a gradient-based and a gradient-free algorithm. While the gradient based solution has a single objective of minimum sulfur content, the gradient-free solution has three objectives: minimum sulfur, inlet temperature, and secondary hydrogen flow rate. A continuous lumping model is used to predict the temperature and sulfur responses of a real hydrodesulfurization plant. An adaptive approach is preferred for the model to cope with the catalyst deactivation interference on the product sulfur content constraint. The effect of changing feed on optimality is demonstrated by using eight types of feeds with varying true boiling point and sulfur content. In addition to that, the impact of catalyst age is shown on similar feed processed on different dates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical engineering transactions
Chemical engineering transactions Chemical Engineering-Chemical Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊介绍: Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信