{"title":"永磁辅助无肋转子同步磁阻电机的实验结果及参数辨识","authors":"M. Zimmermann, Alexander Lange, B. Piepenbreier","doi":"10.1109/INTMAG.2018.8508137","DOIUrl":null,"url":null,"abstract":"Current industrial trends show a growing interest for variable speed drives, energy efficiency and environmental sustainability. Synchronous Reluctance Machines (SynRM) and Permanent Magnet assisted Synchronous Reluctance Machines (PMaSynRM) can fulfil these requirements with proper designs. This paper provides experimental results of a PMaSynRM with a ribless rotor. This design is characterized by an increased magnetic saliency for sensorless control and torque contribution. By the use of ferrite magnets and a glass fiber rotor bandage, a good efficiency and an excellent anisotropy in all current operating points can be achieved. Control strategies for synchronous machines require precise knowledge of the machine parameters. Therefore, the identification of the steady-state inductances and a detailed measurement routine is provided. The measurements prove a distinct saliency.","PeriodicalId":6571,"journal":{"name":"2018 IEEE International Magnetic Conference (INTERMAG)","volume":"59 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental Results and Parameter Identification of a Permanent Magnet assisted Synchronous Reluctance Machine with a Ribless Rotor\",\"authors\":\"M. Zimmermann, Alexander Lange, B. Piepenbreier\",\"doi\":\"10.1109/INTMAG.2018.8508137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current industrial trends show a growing interest for variable speed drives, energy efficiency and environmental sustainability. Synchronous Reluctance Machines (SynRM) and Permanent Magnet assisted Synchronous Reluctance Machines (PMaSynRM) can fulfil these requirements with proper designs. This paper provides experimental results of a PMaSynRM with a ribless rotor. This design is characterized by an increased magnetic saliency for sensorless control and torque contribution. By the use of ferrite magnets and a glass fiber rotor bandage, a good efficiency and an excellent anisotropy in all current operating points can be achieved. Control strategies for synchronous machines require precise knowledge of the machine parameters. Therefore, the identification of the steady-state inductances and a detailed measurement routine is provided. The measurements prove a distinct saliency.\",\"PeriodicalId\":6571,\"journal\":{\"name\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"volume\":\"59 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Magnetic Conference (INTERMAG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTMAG.2018.8508137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Magnetic Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2018.8508137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Results and Parameter Identification of a Permanent Magnet assisted Synchronous Reluctance Machine with a Ribless Rotor
Current industrial trends show a growing interest for variable speed drives, energy efficiency and environmental sustainability. Synchronous Reluctance Machines (SynRM) and Permanent Magnet assisted Synchronous Reluctance Machines (PMaSynRM) can fulfil these requirements with proper designs. This paper provides experimental results of a PMaSynRM with a ribless rotor. This design is characterized by an increased magnetic saliency for sensorless control and torque contribution. By the use of ferrite magnets and a glass fiber rotor bandage, a good efficiency and an excellent anisotropy in all current operating points can be achieved. Control strategies for synchronous machines require precise knowledge of the machine parameters. Therefore, the identification of the steady-state inductances and a detailed measurement routine is provided. The measurements prove a distinct saliency.